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ABSTRACT

Coronary artery disease (CAD) is one of the leading causes of death in the world.

In the United States alone, it is estimated that approximately every 25 seconds, a

new CAD event will occur, and approximately every minute, someone will die of one.

The detection of CAD in its early stages is very critical to reduce the mortality rates.

Magnetic resonance imaging of myocardial perfusion (MR-MPI) has been receiving

significant attention over the last decade due to its ability to provide a unique view of

the microcirculation blood flow in the myocardial tissue through the coronary vascular

network. The ability of MR-MPI to detect changes in microcirculation during early

stages of ischemic events makes it a useful tool in identifying myocardial tissues that

are alive but at the risk of dying. However this technique is not yet fully established

in the clinic due to fundamental limitations imposed by the MRI device physics in

terms of slow imaging speed. The limitations of current MRI schemes often make

it challenging to simultaneously achieve high spatio-temporal resolution, sufficient

spatial coverage, and good image quality in myocardial perfusion MRI. Furthermore,

the acquisitions are typically set up to acquire images during breath holding. This

often results in motion artifacts due to improper breath hold patterns. This also

limits its applicability to a large domain of patient populations such as those with

impaired respiratory function, arrhythmias, pediatrics.

The overall objective of this thesis is to develop a novel dynamic imaging frame-

work that can enable free breathing myocardial perfusion imaging with high spatio-

temporal resolutions and close to whole heart volume coverage. To achieve this, this

thesis deals with developing novel image reconstruction methods for the reconstruc-

tion of dynamic MRI data from highly accelerated / under-sampled Fourier measure-

ments. It specifically focuses on novel blind or adaptive image models that represent

the dynamic image data set using adaptive temporal bases (bases derived from the

data at hand). This is in sharp contrast to classical models that rely on predetermined

temporal bases (such as Fourier bases), which require assumptions such as temporal
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periodicity and breath holding that are clearly not met in free breathing MR-MPI.

Three novel adaptive reconstruction methods are developed and validated: (a) low

rank and sparsity based modeling (k-t SLR), (b) blind compressed sensing (BCS), and

(c) motion compensated compressed sensing (MC-CS). The developed methods are

applicable to a wide range of dynamic imaging problems. In the context of MR-MPI,

this dissertation show feasibilities that the developed methods can enable free breath-

ing myocardial perfusion MRI acquisitions with high spatio-temporal resolutions (<

2mm x 2mm2, 1 heart beat) and high slice coverage.
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1

CHAPTER 1
INTRODUCTION

Coronary artery disease (CAD) is one of the leading causes of death in the world,

and is the leading cause of death in the United States. According to the American

Heart Association, CAD was responsible for approximately 1 of every 6 deaths in the

United States in 2008. It is estimated that in each year, approximately 7.85 million

Americans will experience a new CAD attack; approximately every 25 seconds, a CAD

event will occur, and approximately every minute, someone will die of one [1]. There

are many available treatments for CAD including lifestyle changes (diet, exercise,

stress, smoking), surgical interventions, and pharmaceuticals. However, detecting

CAD in its early stages is very critical to reduce the mortality.

CAD or ischemic heart disease is the narrowing of the coronary arteries, the ves-

sels that supply blood to the myocardium. The narrowing of the arteries results in

a series of biochemical reactions/events in which an event triggers the next until the

patient experiences an angina. The series of events termed as ischemic cascade starts

with altered vascular dysfunction, causing reduced blood flow to the myocardium, fol-

lowed by altered metabolism, followed by wall motion abnormalities, and impairment

of systolic and diastolic function, followed by ECG changes, and finally resulting

in angina (figure. 1.1). Changes in myocardial perfusion which occur early in the

ischemic cascade serve as sensitive indicators of ischemic conditions.

Myocardial perfusion imaging is a non-invasive way to assess blood flow. It is a

promising alternative to the invasive X-ray coronary angiography procedure which

is the current gold standard for the diagnosis of ischemic heart disease. Presently

the modality of single photon emission computed tomography (SPECT) is the most

frequently used in the clinic. However SPECT involves ionizing radiation and suffers

from poor spatial resolution, and attenuation artifacts [4].

Magnetic resonance imaging of myocardial perfusion (MRI-MPI) is an attractive
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Figure 1.1: The ischemic cascade: The narrowing of coronary arteries causes changes
in the vascular dysfunction leading to reduced myocardial perfusion which leads to
altered metabolism, wall motion abnormalities, systolic dysfunction, ECG changes,
and ultimately angina. This thesis focuses on developing non-invasive MRI meth-
ods to improve the detection of myocardial perfusion changes that aid in the early
detection of coronary artery disease. (Schematic adapted from [2]).

imaging modality over SPECT due to its non-invasive nature, usefulness in longitu-

dinal studies, and capability of providing superior spatial resolutions. The basic idea

of MR-MPI is to track the dynamic variations of a paramagnetic contrast agent (typ-

ically Gadolinium) as it traverses through the different regions of the heart. It could

be used to identify myocardial regions of reduced uptake / or reduced perfusion, and

hence be able to identify the myocardial tissues that are alive but at the risk of dying.

1.1 Motivation

Despite its advantages, MR imaging of myocardial perfusion has not yet been fully

established in the clinic due to fundamental limitations imposed by the MRI device

physics. In MRI, data is acquired in the Fourier space (k-space), and the Fourier

encoding process is inherently slow due to limitations on the gradient amplitudes and

switching rates that could risk in resulting peripheral nerve stimulation [5], [6]. The
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Figure 1.2: Dynamic imaging acquisition set up of a myocardial perfusion MRI exper-
iment: An ECG gated saturation recovery sequence is used to acquire multiple slices
within every heart-beat while the subject is breath-holding. After the injection of
Gadolinium, the contrast first passes through the right ventricle, then enters the left
ventricle, and finally the myocardium. The perfusion uptake curves in the different
regions of the myocardium give an indication of any underlying ischemic conditions.
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DRA

ischemia ischemia ischemia ischemia

DRA

DRA

DRA

DRA

(a) Ex-vivo dog scans 

1.56x4.69 mm2 1.04x3.15 mm2 1.04x1.5 mm2

Dark rim artifacts (DRA) reduce as spatial resolution increase 

(b) SENSE reconstructed images at (2.64x2.64 mm2)

Dark rim artifacts (DRA) mimic ischemic patterns

DRA

Figure 1.3: Manifestation of Gibbs ringing as dark rim artifacts: To demonstrate the
relation between Gibbs ringing and the formation of the dark rim artifact (DRA),
an experimental depiction from DiBella et al. (2005) [3] is shown. MR-MPI images
are shown from an ex-vivo dog heart scanned at different resolutions along the phase
encode direction. It is clearly seen that at low resolutions, the sharp intensity profile
distribution across the myocardium and the blood pool has a poor depiction due to
Gibbs ringing. The ringing manifests as a dark rim artifact along the myocardium,
which can mimic the behavior of ischemic patterns. Accurate identification of the
false positive DRAs are challenging at low resolutions.

classical approach of performing MR-MPI is to freeze the cardiac and respiratory

motions by collecting k-space data from multiple 2-dimensional (2D) slices during

each beat within the quiescent diastolic phase (≈250-300 ms), and with breath holding

constraints [7] (see figure 1.2). Since the number of samples that can be acquired in

this finite window is limited, this approach often restricts the image quality required

for accurate depiction of myocardial perfusion changes. Specifically, the need to

reliably detect subtle lesions imposes the following demands in MR-MPI:

• Good in-plane spatial resolution (< 2mm×2mm) to detect subendocardial is-

chemia, assess transmural extent of defects, and reduce dark rim artifacts -

artifacts which could mimic subendocardial ischemia primarily caused due to

Gibbs ringing at low spatial resolutions [3]. (also see figure 1.3).

• Contiguous spatial coverage (>8 slices) to image all regions of the heart, which
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makes the scheme less likely to miss ischemic areas, and allows for better sizing

of ischemia.

• High temporal resolution (1-2 frames/sec) and long breath-hold duration (atleast

30 seconds) to accurately fit the kinetic perfusion model.

• Good contrast to noise ratio.

These contradictory goals are often difficult to realize with the current clinically

available multi slice 2D MR-MPI schemes. Often, clinicians are forced to compromise

on the spatio-temporal resolution and the coverage. Additionally, the occurrence of

motion artifacts with the current perfusion protocols are common, and are majorly

attributed due to improper breath hold patterns. This particularly limits the utility

of perfusion imaging to its full potential in large patient domain population such as

patients with respiratory insufficiencies, pediatric subjects, arrhythmias, and atrial

fibrillation. Due to the above limitations, there is a need for a myocardial perfusion

MRI set up that can relax the long breathhold constraints, can produce dynamic

images with high spatio-temporal resolutions, and extended volume coverage.

1.2 Challenges with existing acceleration
schemes

To address the challenges associated with slow MRI imaging speed, recent in-

terest has been on accelerated schemes that recover the spatio-temporal signal from

sub-sampled/accelerated k-t measurements. Current used accelerations schemes in-

clude parallel imaging [8, 9], and spatio-temporal model based schemes. The spatio-

temporal model based image reconstruction schemes were originally introduced to im-

prove the spatio-temporal resolution and to minimize the acquisition time in breath-

held cardiac MRI (eg: UNFOLD, k-t BLAST, k-t FOCUSS, k-t SPARSE) [10–15].

These methods exploit the banded structure or sparsity of the data in x − f space

to recover the dynamic images from under-sampled measurements. These schemes
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model the dynamic data as a linear combination of a finite number of Fourier expo-

nential basis functions. These bases are estimated from low spatial resolution training

data. To make the recovery well posed, these methods rely on the design of special-

ized k − t sampling patterns such that there are few signal overlaps in the temporal

Fourier space. Compressed sensing (CS) schemes have demonstrated potential to im-

prove breath held MR-MPI [16]. The key difference between CS schemes with the

k − t type model based methods is that they donot require any training data. They

instead rely on the sparse representation of the data in the transform domain and

utilize incoherent sampling conditions coupled with a non-linear reconstruction to

recover the data from undersampled k-t data. In the context of myocardial perfusion

MRI, CS recovery based on exploiting sparse representations in transform domains

such as temporal Fourier domain [16], temporal total variation [17].

However all the above methods have been observed to perform poorly in the pres-

ence of respiratory motion [17], which is often difficult to avoid in several cardiac imag-

ing applications. For example, the dynamic contrast variations in the myocardium

are typically imaged for 40-60 seconds in cardiac perfusion imaging; most patients

cannot maintain a breath-hold for such long durations, especially during hyperemia.

The respiratory motion and contrast variations due to bolus passage severely degrade

the structure and sparsity in x-f space, which makes the above model-based schemes

ineffective (see figure 1.4), (also (see figure 1.5) for an example free breathing CS

reconstruction using x-f sparsity that resulted in motion artifacts due to reduced

sparsity in the transform domain). The current clinical practice of using small im-

age matrices and restricting the temporal resolution and spatial coverage (typically

three slices are acquired) present several challenges in the interpretation of cardiac

perfusion MRI data. It is also not straight-forward to extend the current model-based

schemes to general dynamic imaging applications.
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Figure 1.4: Dynamic data representation in the temporal Fourier transform (x-f)
domain: A numerical cardiac phantom is considered to mimic breath held cine data
in the top row, breath held perfusion data in the middle row, and free breathing
perfusion data in the bottom row. The first column shows the spatial image (x-y) for
a specific time frame; the second column depicts the image time profile (x-t) through
the arrows in the first column. The x-f representations are shown in the third column.
Note that the x-f space is highly structured and sparse for breatheld cine applications,
while the sparsity is disturbed significantly in perfusion and breathing applications.
Model based schemes such as UNFOLD, k-t BLAST/SENSE, k-t FOCUSS utilize the
compactness/sparse property in the x-f space which is clearly disturbed significantly
in free breathing MR-MPI.
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Figure 1.5: Example reconstruction of the k-t SPARSE method (compressed sensing
based on x-f sparsity) on free breathing MR-MPI data. The first row corresponds to
the close to fully sampled reference data with 72 radial rays per frame. Retrospective
sampling of choosing 21 radial rays/frame from the acquired data was considered with
k-t SPARSE. The x-y, x-t, region of interest (marked by green in the top left image)
myocardial perfusion curve and the left ventricle parametric map of the slopes of the
perfusion curves are shown in the columns. In the perfusion maps in (a), regions of
reduced perfusion uptake are depicted in the inferior myocardium wall (as pointed by
the white arrows). It is observed that k-t SPARSE was sensitive to motion artifacts
and resulted in spatio-temporal blurring. This is mainly due to the reduced sparsity of
the free breathing data in the x-f space; in this example, the motion blurring resulted
in loss of depiction of the ischemic regions.
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1.3 Overall objective

The overall objective of this thesis is to develop a novel dynamic imaging frame-

work that can enable free breathing myocardial perfusion imaging with high spatio-

temporal resolutions of the whole heart. To achieve this, this thesis deals with de-

veloping novel image reconstruction methods for the reconstruction of dynamic MRI

data from highly accelerated / under-sampled Fourier measurements. It specifically

focuses on novel blind or adaptive image models that represent the dynamic image

data set using adaptive temporal bases (bases derived from the data at hand). This is

in sharp contrast to current models that rely on predetermined temporal bases (such

as Fourier bases), which require assumptions such as temporal periodicity and breath

holding that are clearly not met in free breathing MR-MPI.

This dissertation deals with developing novel image reconstruction methods in

conjunction with non-Cartesian sampling for the reconstruction of dynamic MRI

data from highly accelerated / under-sampled Fourier measurements. The developed

methods are applicable to a wide range of dynamic imaging problems. In the context

of MR-MPI, this dissertation show feasibilities that the developed methods can en-

able free breathing myocardial perfusion MRI acquisitions with high spatio-temporal

resolutions (< 2mm x 2mm2, 1 heart beat) and slice coverage (upto 7 slices).

1.4 Main contributions of the thesis

1. We have introduced a novel algorithm that exploits low rank and sparse struc-

ture of dynamic data to enable reconstruction from under-sampled k − t space

data (k-t SLR). The main novelties and benefits of k-t SLR over existing meth-

ods are:

• Utilization of the Karhunen-Louve Transform (KLT): In contrast to clas-

sical model based cine MRI schemes that rely on the sparsity or banded

structure in Fourier space, our scheme utilizes the compact representation
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of the data in the KLT domain to exploit the correlations in the dataset.

This signal adaptive strategy gives good performance even when the data is

not sparse in x-f space. This makes our scheme attractive to free breathing

perfusion MRI.

• Realization of a single step KLT scheme: In comparison to current KLT-

based methods that rely on a two-step approach to first estimate the basis

functions and then use it for reconstruction, we pose the problem as a

spectrally regularized matrix recovery problem. This allows for a simul-

taneous estimation of the temporal bases and the KLT model coefficients

from the measured data. This approach addresses the trade-offs associated

with current KLT schemes, and offers significantly enhanced performance.

Moreover, it can account for arbitrary non-Cartesian sampling patterns,

which are more efficient in acquiring multi-dimensional data.

• The use of non convex spectral penalty: In contrast to the classical matrix

recovery schemes that rely on the nuclear norm penalty, we use the non

convex (p < 1) Schatten p-norm matrix penalty to improve the recovery

rate. We use homotopy like continuation to minimize the local minima

problems. Our results show that choosing p < 1 considerably improves the

fidelity of the data for a specified number of measurements.

• Use of additional sparsity properties along with the KLT scheme: In dy-

namic MRI, the individual frames typically have sparse gradients. We

propose to exploit this, in addition to the compact KLT representation,

by penalizing the sum of total variation norms of the images. Our results

demonstrate the reconstructions of the KLT model can be considerably

improved when additional sparsity properties such as sparse gradients are

exploited.
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We have performed validations of k-t SLR using numerical phantoms and in-vivo

cardiac perfusion MRI data to demonstrate the improvement in performance

offered over existing model based methods. Related publications include Refs.

[18–25].

2. Extensions of k − t SLR to account for radial sampling and parallel imaging

and acceleration of free breathing MR-MPI: We have extended k − t SLR in

terms of benefiting from non-Cartesian radial sampling, and parallel imaging.

We have introduced a novel augmented Lagrangian framework to considerably

improve the algorithm’s convergence rate. Using the improved k-t SLR frame

work, we have successfully demonstrated the feasibility of accelerating of free

breathing stress and rest myocardial perfusion MRI data. Our results demon-

strate k-t SLR to provide faithful reconstructions with minimal artifacts com-

pared to existing MR-MPI acceleration methods. Related publications include

Refs. [26, 27].

3. A novel blind compressed sensing (BCS) dynamic MRI framework:

We have proposed a novel BCS frame work to recover dynamic MRI from un-

dersampled measurements. This scheme models the dynamic signal as a sparse

linear combination of temporal basis functions, chosen from a large dictionary.

In contrast to classical compressed sensing, the BCS scheme simultaneously es-

timates the dictionary and the sparse coefficients from the undersampled mea-

surements. Apart from the sparsity of the coefficients, the key difference of the

BCS scheme with current low rank methods is the non-orthogonal nature of the

dictionary basis functions. Since the number of degrees of freedom of the BCS

model is smaller than that of the low-rank methods, it provides improved recon-

structions at high acceleration rates. We formulate the reconstruction as a con-

strained optimization problem; the objective function is the linear combination
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of a data consistency term and sparsity promoting `1 prior of the coefficients.

The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We

have introduced an efficient majorize minimize optimization algorithm to solve

the resulting BCS problem.This algorithm is seen to be considerably faster than

approaches that alternates between sparse coding and dictionary estimation, as

well as the extension of K-SVD dictionary learning scheme. We have also shown

that the proposed scheme is more robust to local minima compared to K-SVD

method, which relies on greedy sparse coding. Our phase transition experi-

ments demonstrate that the BCS scheme provides much better recovery rates

than classical Fourier-based CS schemes, while being only marginally worse than

the dictionary aware setting. Since the overhead in additionally estimating the

dictionary is low, this method can be very useful in dynamic MRI applications,

where the signal is not sparse in known dictionaries. We have demonstrated

the utility of the BCS scheme in accelerating contrast enhanced dynamic data.

Related publications include Refs. [28–31].

4. To address the problem of motion artifacts in typical compressed sensing recon-

structions, we have proposed a novel motion estimation and compensated

compressed sensing reconstruction scheme. The proposed scheme jointly esti-

mates the motion and the dynamic images in first pass cardiac perfusion MR

imaging. We formulate the recovery as a minimization scheme using a uni-

fied objective function that combines data consistency, and compressed sensing

constraints on the motion compensated dataset. We have introduced an effi-

cient variable splitting framework with continuation to decouple the problem

into simpler sub-problems. The novelties enabled by this optimization are (a) a

generalized formulation capable of handling any temporal sparsifying transform

(such as temporal Fourier, temporal gradient, temporal PCA), (b) derivation

of a reference dataset that is free of motion from the measurements themselves
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(c) efficient decoupling of the motion estimation problem from the reconstruc-

tion problem. Unlike existing MC-CS schemes, the proposed scheme does not

require fully sampled prescans or navigators for motion estimation. Validations

on numerical phantoms and invivo free breathing MR-MPI data demonstrate

the utility of the proposed scheme in significantly improving compressed sensing

reconstructions. Related publications include [32–35].

1.5 Outline of the thesis

The structure of the dissertation is as follows:

• Chapter 2: Accelerated dynamic MRI by exploiting low rank and

sparse structure: k-t SLR: This chapter presents a novel method to re-

construct dynamic data from undersampled Fourier data. An framework that

exploits the low rank and sparse structure of dynamic data is presented. The

formulation and the optimization algorithm is highlighted. Results on numer-

ical phantom and invivo cardiac perfusion MRI data are presented to validate

the method.

• Chapter 3: Accelerating free breathing myocardial perfusion MRI

using multi coil radial k-t SLR: This chapter presents the development of k-t

SLR to include non-Cartesian radial sampling and parallel imaging. The chapter

discusses considerations on the sampling pattern, and an implementation of a

fast augmented Lagrangian optimization algorithm. Using the improved k-

t SLR frame work, this chapter demonstrates the feasibility of accelerating

of free breathing stress and rest myocardial perfusion MRI data. Extensive

comparisons against existing accelerated methods in the context of MR-MPI

are presented.

• Chapter 4: Blind compressed sensing dynamic MRI: This chapter presents

a novel blind compressed sensing approach to reconstruct dynamic MRI data
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from undersampled measurements. It discusses the details on different formu-

lations, and the corresponding algorithmic implementations. Empirical simu-

lations are presented to determine the phase transition behavior of the blind

compressed sensing (BCS) scheme. Validations are performed on contrast en-

hanced data by comparing the BCS scheme with existing compressed sensing

and low rank models.

• Chapter 5: A novel motion compensated compressed sensing frame-

work for myocardial perfusion MRI: This chapter presents a new joint

reconstruction and motion estimation framework in the context of compressed

sensing. The chapter discusses in detail the new formulation, and its novelties

to account for different sparsifying transforms, independence of training data

for motion estimation. Validations are performed on numerical phantom and

invivo data to study the resulting formulation in terms of convergence and its

performance against existing compressed sensing methods.

• Chapter 6: Summary and Future work: Contributions of this thesis are

summarized and recommendations on future work are suggested.
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CHAPTER 2
ACCELERATED DYNAMIC MRI BY EXPLOITING LOW RANK

AND SPARSE STRUCTURE (K-T SLR)

2.1 Introduction

The imaging of dynamically evolving phenomena is central to several magnetic

resonance imaging (MRI) applications, including cardiac, perfusion, functional, and

gastro-intestinal imaging. Achieving high spatio-temporal resolutions is challenging

in dynamic MRI due to the hardware limitations and the risk of peripheral nerve

stimulation. As discussed in chapter I, model based schemes that exploit the banded

structure/sparsity of dynamic data in the x-f space have demonstrated success in

improving breath held cardiac MRI [10–15]. However, these methods perform poorly

in the presence of contrast dynamics and motion. To address this, recent interest

has been on methods that exploit the compact signal representation in the Karhunen

Louve transform (KLT) domain as an alternative to x-f space sparsity/structure [36–

39]. Since KLT is a data-derived transform, the resulting adaptive scheme is capable

of exploiting the correlations in the data, even when the temporal profiles of the voxels

are not periodic. This property makes these methods applicable to a range of dynamic

imaging problems. Current KLT-based algorithms rely on a two-step approach to

recover the data [37–40]. Specifically, they estimate the temporal basis functions

using the singular value decomposition (SVD) of a training dataset; the training

dataset is an image time series with low spatial resolution and Nyquist temporal

samping rate. The training dataset is obtained as the IFFT of the central phase

encodes, which is collected along with higher k-space samples at sub-Nyquist temporal

sampling rates. The estimated temporal basis functions are then used to reconstruct

the data with high spatio-temporal resolution from sub-Nyquist sampled k-space data.

These schemes rely on the implicit assumption that the temporal basis functions

estimated from the training data closely approximate the principal components of

the entire data. Clearly, this approximation is heavily dependent on the number
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(a) x− y (b) x− t (c) x− f (d) x−KLT (e) First few singu-
lar values

Figure 2.1: Utility of KLT in compactly representing the dynamic image time series:
The numerical simulation of breath held cine data (top row) and ungated free breath-
ing data (bottom row), along with their corresponding representations in the x−f and
x−KLT spaces are shown. The x− f space coefficients are highly sparse/structured
in the context of breath-held acquisitions due to the pseudo-periodic nature of heart-
beats. The structure and sparsity of the x − f space is disturbed in the presence
of breathing motion. In contrast, the free breathing data is compact in the x−KLT
space. The few significant singular values implies that the dataset can be efficiently
approximated as a low rank matrix, described by (2.1).

of phase encodes in the training data. For example, if only a single phase encode

is used in the training stage, the estimated temporal functions will fail to capture

the dynamics due to intermediate vertical shifts resulting from respiratory motion.

Moreover, this may also result in the scheme failing to capture small details such as

perfusion defects. These problems can be minimized by acquiring more phase-encodes

in the training data. However, this comes at the expense of the number of higher

k-space encodes that can be acquired at a specified acceleration factor, resulting in

significant spatial aliasing artifacts.

In this chapter, we propose a novel algorithm to significantly accelerate dynamic

MRI by exploiting the correlations between the temporal profiles of the voxels. In
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contrast to the classical KLT-based schemes that use the above two-step approach [37–

40], we propose to simultaneously estimate the temporal basis functions and its spatial

weights directly from the entire k − t space data. This approach is enabled by the

re-interpretation of the KLT based reconstruction as a spectrally regularized matrix

recovery scheme. Specifically, we pose the joint estimation of the bases and the signal

as the recovery of a low-rank matrix, obtained by stacking the temporal dynamics of

the voxels, from the measured data. This approach provides more accurate estimates

of the temporal basis functions and hence result in reconstructions with better quality

at a specified acceleration.

The recovery of a low-rank matrix using nuclear norm minimization has been

rigorously studied by several researchers [41–45]. Motivated by the recent results in

the use of non-convex penalties in compressed sensing [46,47], we introduce novel non-

convex spectral penalties to minimize the number of measurements required to recover

a low-rank matrix. By suppressing the singular vectors that correspond to aliasing

artifacts, this approach can considerably improve the reconstructions. Moreover,

the images in dynamic time series themselves can be assumed to have sparse wavelet

coefficients or gradients. We propose to additionally exploit the sparsity of the matrix

in pre-determined domains to further improve the recovery rate. Since the degrees

of freedom in representing sparse and low-rank matrices are significantly lower than

the class of arbitrary low-rank matrices, this approach enables us to improve the

recovery rate. We do not promote joint sparsity as done in [48]. In our work, the

temporal basis functions themselves are not constrained to be sparse in any bases;

enforcing the sparsity in a specified space (eg. Fourier) may introduce significant bias

in the presence of motion (and/or perfusion) (see Fig. 1). Moreover, we observe that

different temporal basis functions play dominant roles in different spatial regions.

Since the sparsity properties of these functions may be very different, we expect the

use of joint sparsity penalty to smooth subtle motion/perfusion induced variations.
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The preliminary version of this work was reported in our conference paper [20].

The work of Haldar et. al. [49], which was also published in the same proceedings, is

conceptually similar to the proposed scheme. However, they do not use sparsity priors

and their optimization scheme is drastically different from the proposed scheme.

Most of the existing convex matrix recovery algorithms are based on iterative

singular value thresholding [42,50,51]. Since it is not straightforward to extend these

schemes to our problem with both sparsity and low-rank penalties, we introduce

a novel variable splitting algorithm for the fast minimization of the optimization

criterion. This approach is the generalization of similar algorithms used for total

variation minimization [52,53] to matrix recovery. We demonstrate the utility of the

proposed scheme in the context of clinical cardiac perfusion MRI. Validations using

numerical phantoms and in-vivo data demonstrate the significant improvement in

performance over state of the art methods. Although we focus on cardiac perfusion

imaging in this chapter, the algorithm is readily applicable to most dynamic MRI

applications.

2.2 Dynamic MRI using KLT

We denote the spatio-temporal signal as γ(x, t), where x is the spatial location

and t denotes time. The dynamic MRI measurements correspond to the samples of

the signal in k − t space, corrupted by noise:

bi =

∫

x

γ(x, ti) exp
(
−jkTi x

)
dx + ni; i = 0, .., s− 1.

Here, (ki, ti) indicates the ith sampling location. We denote the set of sampling

locations as Ξ = {(ki, ti), i = 0, .., s − 1}. The above expression can be rewritten in

the vector form as b = A(γ) + n, where, A is the Fourier sampling operator. The

goal is to recover the signal γ(x, t) from the measured k-t space samples.

In dynamic imaging applications, the temporal profiles of the voxels, indicated by
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the n-dimensional vectors

qi = [γ(xi, t0), γ(xi, t1), .., γ(xi, tn−1)]
T ; i = 0, ..,m− 1,

are highly correlated/ linearly dependent. Here, m is the number of voxels. Liang

et. al., proposed to re-arrange the spatio-temporal signal γ(x, t) in a matrix form to

exploit the correlations [36,37]:

Γ =




γ (x0, t0) . . . γ (x0, tn−1)

...

γ (xm−1, t0) . . . γ (xm−1, tn−1)




(2.1)

The rows of Γ correspond to the voxels, while the columns represent the temporal

samples. Since the rows of this m× n matrix are linearly dependent, the rank of Γ,

is given by r < min (m,n). An arbitrary m× n matrix of rank r can be decomposed

as

Γ = U︸︷︷︸
m×r

Σ︸︷︷︸
r×r

VH
︸︷︷︸
r×n

. (2.2)

This decomposition implies that the spatio-temporal signal γ(x, t) can be expressed

as a weighted linear combination of r temporal basis functions [36,37]:

γ(x, t) =
r−1∑

i=0

ρi(x) vi(t). (2.3)

The temporal basis functions vi(t) are the columns of the matrix V in (2.2) while the

spatial weights ρi(x) are the row vectors of UΣ (often termed as spatial weights).

The utility of this scheme in compactly representing the dynamic time series data is

illustrated in Fig. 2.1. Most of the KLT-based algorithms use the below-mentioned

two-step strategy to reconstruct the spatio-temporal signal [36–40].

1. Estimate the temporal basis functions vi(t); i = 0, .., r − 1 using SVD of the
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training image time-series. The training data consists of dynamic image data,

acquired with low-spatial resolution and high temporal sampling rate; it is ob-

tained as the IFFT of the central phase encodes, acquired at the Nyquist tem-

poral sampling rate.

2. Use the linear model specified by (2.3) to recover the cardiac data from sub-

Nyquist sampled measurements, using the pre-determined temporal basis func-

tions vi(t). This involves the estimation of the spatial weight images ρi(x); i =

0, .., r− 1 from the under-sampled measurements. Since r << n, this approach

provides a significant reduction in the number of unknowns and hence the num-

ber of measurements.

These schemes implicitly assume that the principal basis functions estimated from

the low-resolution data to closely approximate the original KLT basis functions. As

discussed previously, this assumption is violated when the number of phase encodes in

the training data are too few, resulting in the loss of subtle details and reconstructions

with inaccurate temporal dynamics. While the acquisition of more training data can

minimize these problems, this comes at the expense of the number of high-frequency

encodes that can be acquired at a specified acceleration rate; this can often result in

aliasing artifacts. In summary, the performance of the two-step schemes requires a

fine balance between the amount of training data and the number of high-frequency

encodes. To overcome these problems, we introduce the single-step spectrally regu-

larized reconstruction scheme in Section 2.3.

2.2.1 Matrix recovery using nuclear norm minimization

The recovery of a low-rank matrix Γ from few of its linear measurements is cur-

rently a hot topic in signal processing. The recent theoretical results indicate that

a matrix Γ ∈ Rm×n of rank r; r ≤ min(m,n) can be perfectly recovered from its
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measurements b = A (Γ) by solving the constrained optimization problem [43,54]:

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 such that rank (Γ) ≤ r. (2.4)

The rank constraint is an effective means of regularizing the inverse problem since it

significantly reduces the number of degrees of freedom. Specifically, the number of

degrees of freedom in representing m × n matrices of rank r is r(m + n − r), which

is much smaller than mn. Recht et. al. have shown that this approach perfectly

recovers the matrix with a high probability, if the random measurement ensemble

is used and the number of measurements exceeds a constant (two to four) times the

number of degrees of freedom [54]. Reformulating the above constrained optimization

problem using Lagrange’s multipliers, we get

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ rank (Γ) . (2.5)

Since the rank penalty is non-convex, it is often replaced with the nuclear norm, which

is the closest convex relaxation. The nuclear norm of an r-rank matrix Γ = UΣV∗,

denoted by ‖Γ‖∗, is the sum of the singular values of Γ (‖Γ‖∗ =
∑

i(Σi,i)). With this

relaxation, the recovery of the matrix is simplified as

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ ‖Γ‖∗︸ ︷︷ ︸

C(Γ)

(2.6)

2.3 k-t SLR: Formulation

We introduce the proposed algorithm in two steps to facilitate its easy under-

standing. We will first introduce the reconstruction of the spatio-temporal signal as a

spectrally regularized matrix recovery problem in Section 2.3.1. This scheme is then

further constrained using additional sparsity priors to improve the recovery rate in
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Section 2.3.2.

2.3.1 Regularized matrix recovery using spectral priors

We recover the matrix Γ from the undersampled k − t space data as a spectrally

regularized optimization problem, similar to (2.6):

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λϕ (Γ) , (2.7)

where ϕ(Γ) is an appropriate spectral penalty1. We use the general class of Schatten

p-functionals, specified by

ϕ(Γ) = (‖Γ‖p)p =

min{m,n}∑

i=1

σpi . (2.8)

Here, Γ = UΣV∗ is the singular value decomposition of Γ and Σ = diag ([σ0, σ1, ..σr−1]).

The above spectral penalty simplifies to the nuclear norm for p = 1. When p ≤ 1,

this penalty ceases to be a norm and is non-convex. The use of similar non-convex

semi-norms are well-studied in the context of vector recovery; they are found to

significantly improve the reconstruction of the signal from fewer measurements, in

comparison to the standard `1 semi-norms [55–59]. Majumdar et. al [60] introduced

the non-Convex Schatten p-norm for denoising and 2D MRI. However, the optimiza-

tion algorithm in [60] is very different from our approach. In addition to providing

rapid convergence, our algorithm is also capable of using sparsity penalties.

Note that the cost function, specified by (2.8), does not depend explicitly on the

temporal basis functions or its spatial weights as in the case of current two-step KLT

schemes. However, the optimization algorithm to minimize (2.8) iteratively updates

the temporal basis functions and spatial weights, which are essentially the column

vectors of V and U respectively. The optimization algorithm is discussed in detail in

1Such cost functions are termed as spectral penalties since they are functions of the singular
values of the matrix.
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Section 2.4.

2.3.2 Regularized matrix recovery using spectral and
sparsity priors

In dynamic imaging applications, the images in the time series may have sparse

wavelet coefficients or sparse gradients. In addition, if the intensity profiles of the

voxels are periodic (eg. cardiac cine), the columns of Γ may be sparse in the Fourier

domain. We propose to additionally exploit the sparsity of the signal in specified

basis sets along with the low-rank property to further improve the recovery rate.

Specifically, we consider the simple example of recovering an r-rank matrix Γ ∈ Rm×n

that has atmost N non-zero entries in a specified basis: ‖ΦHΓΨ‖`0 ≤ N . Here, Φ

and Ψ are transformations or operators that sparsify the row-space and column space

of Γ, respectively. For example, Φ can be chosen to be the 2-D wavelet transform to

sparsify each of the images in the time series, while Ψ can be a 1-D Fourier transform

to exploit the pseudo-periodic nature of motion. The set of matrices that satisfy both

the rank and the sparsity constraints are far smaller in dimension than the class of

matrices that satisfy only one of the constraints. For example, consider an r-rank

matrix Γ whose right and left singular vectors are k1 and k2 sparse. The number of

degrees of freedom of such r-rank matrices is given by r(k1 +k2− r). If k1 << m and

k2 << n, the use of this prior knowledge, along with the low-rank constraint, can

significantly reduce the number of measurements required to recover the matrix. To

exploit the sparsity and low-rank properties of the matrix, we formulate the problem

as

Γ∗ = arg min
Γ
‖A (Γ)− b‖2

s.t
{

rank(Γ) ≤ r, ‖ΦHΓΨ‖`0 < K
}

(2.9)
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Rewriting the above constrained optimization problem using Lagrange’s multipliers

and relaxing the penalties, we obtain

Γ∗ = arg min
Γ
‖A (Γ)− b‖2 + λ1 ϕ (Γ) + λ2 ψ (Γ) , (2.10)

where ψ (Γ) = ‖ΦHΓΨ‖`1 is a surrogate for the `0 term and ϕ(Γ) = ‖Γ‖pp. When

p ≥ 1, the cost function is convex and hence will have a unique minimum.

While it is straight-forward to use this scheme to exploit the sparsity in different

transform domains, it cannot be used for non-separable total variation (TV) penal-

ties. Exploiting the sparsity of the gradient has proven to be very powerful in various

image recovery application and is shown to provide comparable or better perfor-

mance than most other transform domain schemes [61]. To adapt this scheme for TV

regularization, we consider a collection of transforms/operators on Γ, indicated by

ΦH
i ΓΨi, i = 0, .., q − 1, and specify the non-separable penalty as

ψ(Γ) =

∥∥∥∥∥∥

√√√√
q−1∑

i=0

|ΦH
i ΓΨi|2

∥∥∥∥∥∥
`1

. (2.11)

The total variation norm of the entire volume can be obtained by setting q = 3, Φ0 =

Dx; Ψ0 = I, Φ1 = Dy; Ψ1 = I, and Φ2 = I; Ψ2 = Dt, where Dx, Dy and Dt are the

finite difference matrices along x, y, and t respectively. Note that the above expression

simplifies to the standard `1 penalty, when the number of transforms/operators is

q = 1.

The proposed scheme is well posed since the sparsifying transforms/operators

Φi,Ψi; i = 0, .., q − 1 are incoherent with the Fourier sampling operator. We do not

need the additional assumption of the right and the left singular vectors of Γ to be

in-coherent with the operator that picks the samples/matrix entries of Γ as in [41]to

make the problem well posed.
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2.4 Optimization Algorithm

It is not straightforward to extend the current nuclear norm minimization schemes

[42,50,51] to solve (2.10), since it uses both sparsity and spectral penalties. We intro-

duce a novel variable splitting algorithm for the efficient recovery of the matrix using

(2.10).We pose the regularized matrix recovery scheme as a constrained minimization

problem using variable splitting:

Γ∗ = arg min
Γ,R,S

‖A (Γ)− b‖2 + λ1 ϕ (R) + λ2

∥∥∥∥∥∥

√√√√
q−1∑

i=0

‖Si‖2
∥∥∥∥∥∥
`1

s.t. Γ = R; Si = ΦH
i ΓΨi; i = 0, .., q − 1(2.12)

Here, R and Si; i = 0, .., q − 1 are auxiliary variables, which are also determined

during the optimization process. The rationale behind the above decomposition is

that the constrained optimization problem is simpler to solve than its unconstrained

version, specified by (2.10). We solve (2.12) using the penalty method, where we

minimize

Dβ1,β2(Γ,R,Si) = ‖A (Γ)− b‖2 + λ1 ϕ (R) + λ2

∥∥∥∥∥∥

√√√√
q−1∑

i=0

‖Si‖2
∥∥∥∥∥∥
`1

+
β1
2
‖Γ−R‖2 +

β2
2

q−1∑

i=0

‖ΦH
i ΓΨi − Si‖2 (2.13)

with respect to Γ, R and Si; i = 0, .., q−1. The second row of (2.13) are the penalties

introduced to enforce the constraints Γ = R and Si = ΦH
i ΓΨi; i = 0, .., q − 1.

The solution of the above problem tends to that of (2.12),when β1, β2 → ∞. We

solve (2.13) using a three-step alternating minimization scheme below (2.14,2.15,2.16),

where we solve a variable of interest assuming the rest to be known:

Γn+1 = arg min
Γ
‖A (Γ)− b‖2 +

β1
2
‖Γ−Rn‖2 +
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β2
2

q−1∑

i=0

‖ΦH
i ΓΨi − Si,n‖2, (2.14)

Rn+1 = arg min
R
‖Γn+1 −R‖2 + 2λ1/β1 ϕ (R) , (2.15)

Si,n+1 = arg min
{Si}

q−1∑

i=0

‖ΦH
i Γn+1Ψ− Si‖2 + 2λ2/β2

∥∥∥∥∥∥

√√√√
q−1∑

i=0

‖Si‖2
∥∥∥∥∥∥
`1

; i = 0, .., q − 1,(2.16)

Similar alternating directions methods are widely used in compressed sensing and

TV minimization [53,62]. The first sub-problem (2.14) is quadratic and hence can be

solved analytically as

Γn+1 =

(
ATA+

β1
2
I +

β2
2

q−1∑

i=0

QTi Qi
)−1(

ATb +
β1
2

R +
β2
2

q−1∑

i=0

Si

)
= T (R,Si) ,

(2.17)

where the operator Qi is defined as Qi(Γ) = ΦH
i ΓΨi; i = 0, .., q − 1 This step can be

efficiently evaluated in the Fourier domain, if the measurements are Fourier samples

on a Cartesian grid [52, 53]. We instead rely on solving (2.14)using a few conjugate

gradient steps, since we are dealing with non-Cartesian sampling problems.

The second sub problem is of the similar form of standard nuclear norm mini-

mization problems. The iterative singular value thresholding (IST) scheme used in

nuclear norm minimization can be generalized to the case that has non convex spec-

tral penalties. The generalization in this regard, would lead to obtaining Rn+1 as a

singular value thresholding of Γn+1, specified by Sλ1/β1 :

Rn+1 =
(
Sλ1/β1 ◦ T

)
(Rn,Si,n) , (2.18)

where the singular value shrinkage is specified by,

Sλ1/β1(Γn+1) =

min(m,n)∑

i=0

(
σi − λ σp−1i /β

)
+

uiv
∗
i , (2.19)

Here, ui, vi and σi are the singular vectors and values of Γn+1, respectively. The
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thresholding function is defined as

(σ)+ =





σ if σ ≥ 0

0 else
(2.20)

Note that, when p = 1, the expression in (2.19) simplifies to the shrinkage scheme

used for nuclear norm minimization problems.

The solution to the third sub problem (2.16) requires the joint processing of all the

termsQi(Γn+1); i = 0, .., q−1, such that the magnitude, specified by
∑q−1

i=0 ‖Qi(Γn+1)‖2,

is reduced:

Si,n+1 =
Qi(Γn+1)∑q−1

i=0 ‖Qi(Γn+1)‖2
·
(
q−1∑

i=0

‖Qi(Γn+1)‖2 −
λ2
β2

)

+

= κλ2/β2(Γn+1), (2.21)

This approach is termed as multidimensional shrinkage of {Qi(Γn+1), i = 0, .., q − 1}

[53, 62].

The convergence of the above three step alternating minimization scheme as the

penalty parameters β1, β2 → ∞ is well known [63]. The three-step optimization

scheme involves update rules based on the operators T ,Sλ1/β1 , κλ2/β2 . Clearly, we are

interested in the convergence of this iterative scheme to its fixed point, specified by

R∗,S∗i ; i = 0, .., q − 1. Following the proofs in [52], it can be shown that the three-

step scheme converges to the global minimum of Dβ1,β2(Γ,R,Si) for any fixed β1 >

0, β2 > 0. The argument proceeds by showing that the operator T and the shrinkage

operations Sλ1/β1 , κλ2/β2 are non-expansive; (i.e, ‖Sλ1/β1(Γ1) − Sλ1/β1(Γ2)‖2 ≤ ‖Γ1 −

Γ2‖2)2 and ( ‖κλ2/β2(Γ1) − κλ2/β2(Γ2)‖2 ≤ ‖Γ1 − Γ2‖2). Since these operators are

non-expansive, the above iterative algorithm to update the auxiliary variables R and

Si will decrease the distances ‖Rn−R∗‖F , ‖Si,n−S∗i ‖F respectively at each iteration;

here (R∗, S∗i ; i = 0, ..q − 1) is the optimal solution. This implies that Rn → R∗ and

2The shrinkage operation is non-expansive if the spectral norm is convex.
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Si,n → S∗i as n→∞.

High values of β1, β2 are needed for the solution of Dβ1,β2(Γ,R,Si) to yield a

good approximation for the original minimization scheme in (2.12), as discussed be-

fore. However, the quadratic problem specified by (2.14) will become ill-conditioned

for high values of β1, β2, resulting in poor convergence. We propose to use a con-

tinuation strategy to overcome the tradeoff between computational complexity and

accuracy. Specifically, we will start with very small values of β1, β2, when the al-

gorithm converges very fast to {Γ,R,Si}(β1,β2)n ; i = 0, .., q − 1, which is the solu-

tion of Dβ1,β2 . To improve the quality of the approximation, we will then increase

(β1, β2)n to obtain (β1, β2)n+1 and initialize the algorithm with {Γ,R,Si}(β1,β2)n+1 =

{Γ,R,Si}(β1,β2)n ; i = 0, .., q − 1. We observe that the continuation strategy signifi-

cantly improves the convergence of the algorithm. Similar continuation strategies are

widely used in similar algorithms for total variation minimization and compressed

sensing [53,62].

To summarize, the regularized matrix recovery scheme as a constrained mini-

mization problem using variable splitting framework involves the following three step

algorithm with a continuation strategy:

Variable splitting with continuation: Set p = 0; (β1)0, (β2)0 > 0; R = 0; Si =

0; i = 0, .., q − 1; Γ = 0

Repeat

Repeat

Update Γ by solving (2.14) using the CG scheme;

Shrinkage: R = Sλ1/(β1)p (Γ);

Shrinkage: Si = κλ2/(β2)p (Γ) ; i = 0, .., q − 1;

Until stopping criterion is satisfied.

(β1)p+1 = (β1)p ∗ INC FACTOR1; (β2)p+1 = (β2)p ∗ INC FACTOR2;

p = p+ 1
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Until R ≈ Γ and Si = ΦH
i ΓΨi; i = 0, .., q − 1

Note that the above algorithm involves two loops. The parameters β1, β2 are

incremented in the outer loop, while the minimization of Dβ(Γ,R,Si); i = 0, .., q − 1

is performed in the inner loop. We terminate the inner iteration when the stopping

criterion, specified by

dn =

∣∣∣∣
D(β1,β2)p(Γn,Rn)−D(β1,β2)p(Γn−1,Rn−1)

D(β1,β2)p(Γn,Rn)

∣∣∣∣ < TOLERANCE. (2.22)

is satisfied.

The above discussed theoretical guarantees on the convergence are not valid for the

non-convex spectral penalties (i.,e when p < 1). However, we did not experience issues

with convergence in our practical experiments; we obtained monotonic reduction in

the cost function and the algorithm converged to a good minimum, independent of

the initialization. The main reason for the good convergence performance may be

attributed to the continuation scheme.

2.4.1 Implementation

The computationally expensive component of the algorithm is the singular value

decomposition required for (2.15). The usual dynamic MRI data sizes are 128x128x70,

resulting in the matrix Γ of size 16384 x 70. To minimize the computational com-

plexity, we first determine the right singular vectors and the singular values as the

eigen decomposition of ΓHΓ. The eigen decomposition of this 70x70 matrix takes

less than 0.1 seconds in MATLAB. The left singular vectors are then obtained using

a simple least squares scheme, using the known singular values and left singular vec-

tors. We realized the entire algorithm, described by (2.14)-(2.16), in MATLAB using

Jacket [64] on a Linux workstation with eight cores and a NVDIA Tesla graphical

processing unit. We observe that the execution time for the reconstruction of the

largest data (128x128x70) is approximately eight to ten minutes. We focus on the
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(a) Pre-contrast (b) Peak RV uptake (c) Peak LV uptake (d) Temporal profile (x-t)

a

        b     c

Figure 2.2: The PINCAT phantom used to validate the proposed scheme. Three
distinct spatial frames at different instances of the contrast uptake are shown in (a)-
(c). The x− t cross section of the dataset corresponding to the arrow in (c) is shown
in (d). The temporal location of the frames shown in (a) - (c) are marked by dotted
lines in (d).

total variation sparsity prior as explained in Section 2.3.2. However, the proposed

algorithm is general enough to exploit the sparsity in any transform/operator domain.

2.5 Materials and Methods

2.5.1 Datasets

We study the utility of the proposed k-t SLR scheme in accelerating cardiac per-

fusion MRI. To validate the method, we use (a) the physiologically improved non

uniform cardiac torso (PINCAT) numerical phantom [65, 66] and (b) in-vivo cardiac

perfusion MRI data. We set the parameters of the PINCAT phantom to obtain real-

istic cardiac perfusion dynamics and contrast variations due to bolus passage, while

accounting for respiration with variability in breathing motion. The contrast varia-

tions due to bolus passage are realistically modeled in regions of the right ventricle

(RV), left ventricle (LV) and the left ventricle myocardium. To obtain a realistic

model, we use the Biot-Savart’s law to simulate the spatial distribution of the mag-

netic flux of the receiver coil [67]. We consider a single coil that is placed on the chest

and has the maximum sensitivity to the FOV containing the heart. Here, we use a

single slice and assume a temporal resolution of one heart-beat, acquired during the

diastolic phase (where the cardiac motion is minimal). The time series data consists
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of 70 time frames. We observe that the predominant motion (due to respiration) is

in the superior-inferior direction with a low degree of through plane motion in the

anterior-posterior direction. The spatial matrix size is 128 x 128, which corresponds

to a spatial resolution of 1.5 x 1.5 mm2. A few slices of this dataset are shown in

Figure 2.2.

The in-vivo data was acquired on a 3T Siemens scanner with a saturation-recovery

sequence (TR/TE=2.5/1 ms, saturation recovery time=100 ms) at the University of

Utah. The study was approved by the institutional review board and written consent

was obtained from the subject before the acquisition. The data from a single slice

was acquired on a Cartesian grid with a k-space matrix of 90 × 190 (phase-encodes

x frequency encodes) at a temporal resolution of one heart-beat. The subject was

instructed to hold the breath for as long as possible. However, the data had significant

motion as the subject was not capable of holding the breath for the entire imaging

duration.

2.5.2 Comparisons against different methods

We compare the k-t SLR scheme against (a) two-step KLT schemes with different

number of phase encodes in the training data (b) the k-t FOCUSS scheme, which

relies on sparsity in the x-f space, and (c) variants of the k-t SLR scheme, which rely

on only the TV penalty and the spectral penalty alone. Using these comparisons, we

mainly seek to verify the following claims:

1. Posing the dynamic reconstruction problem as a spectrally regularized ma-

trix recovery problem provides improved reconstructions over two-step KLT

schemes. To verify this claim, we focus on the comparisons between the spec-

trally regularized matrix recovery scheme (only low rank prior; p = 0.1;λ2 = 0)

and the two step KLT method [36–39] with different training data settings at

different accelerations.
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2. The exploitation of the sparsity priors, along with the low rank structure, can

improve the reconstructions. To verify this claim, we focus on the comparisons

of the k-t SLR scheme against regularized schemes that rely only on the spectral

(λ2 = 0) or TV (λ1 = 0) penalty.

3. The k-t SLR scheme can outperform regularized schemes that rely on the spar-

sity in x-f space. The k-t FOCUSS scheme is known to provide comparable or

better performance over all dynamic imaging schemes that use the sparsity in

x-f space. We hence compare the k-t SLR scheme against k-t FOCUSS.

The reconstructions are evaluated at a range of acceleration factors denoted by

A, which is defined as

A =
# PEs in fully sampled dataset

# acquired PEs
; (2.23)

it is the ratio of the number of acquired phase encodes in the fully sampled dataset

to the number of phase encodes used to reconstruct the dataset. We quantify the

performance of the algorithms using the signal to error ratio (SER) specified as

SER = −10 log10

‖Γrec − Γorig‖2F
‖Γorig‖2F

, (2.24)

where ‖ · ‖F is the Frobenius norm. While this measure provides a quantitative index

of performance, it is notorious in being insensitive to artifacts and other distortions.

Hence, we also show specific reconstructed frames and the time series data to enable

visual comparisons.

The two-step KLT schemes assume a dual density Cartesian sampling pattern.

Specifically, the central k-space samples are acquired at the Nyquist temporal sam-

pling rate, while the outer k-space are sampled with a lower-density as shown in

Figure 2.5. We consider the KLT scheme with different number of phase encodes
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in the training data to analyze the performance dependence of the scheme on the

number of samples in the training data. Here, we denote the size of the training data

by Nt. The regularized reconstruction schemes such as k-t FOCUSS, k-t SLR, and

its variants (spectral penalty alone, TV penalty alone) are capable of accounting for

arbitrary non-Cartesian sampling patterns. For these schemes, we consider a radial

trajectory with uniform angular spacing; the angular spacing between the spokes is

chosen to obtain the specified acceleration factor. The trajectory is rotated by a small

random angle in each temporal frame to make the measurements incoherent. By us-

ing the equi-angular spacing within each frame, we ensure that the entire k-space is

covered uniformly. By considering a small random angle rotation, we not only main-

tain incoherency, which is required for k-t SLR, spectral penalty and k-t FOCUSS

schemes; but also ensure that there are not any sudden jumps across the samples

acquired over time, as these jumps could not be optimal for the reconstruction based

on only the TV penalty.

We use the NUFFT approximation [68] to realize the A operator. See Figure 2.5

for an illustration. We add zero mean Gaussian random noise to the measurements in

the PINCAT comparisons such that the signal to noise ratio is 46 dB. In the in-vivo

comparisons, we resample the uniformly sampled Cartesian data. Hence, we approxi-

mate the above radial trajectory with its closest Cartesian trajectory. Specifically, we

approximate each k-space location with its nearest neighbor on the Cartesian grid.

We chose to use the non convex (p = 0.1) spectral penalty to exploit the low rank

structure because of its superior performance of suppressing singular values associ-

ated with artifacts as opposed to the (p = 1),nuclear norm penalty; (See figure (2.4),

where the spectral penalty obtains a consistent increase in the SER over nuclear norm

at a range of accelerations).

The regularization parameters of the penalized schemes (k-t FOCUSS, k-t SLR,

low rank penalty alone, and TV penalty alone) have to be optimized to enable fair
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comparisons between the different methods. We determine the optimal regularization

parameters such that the SER of the reconstructions are maximized. Similarly, the

model order (number of temporal basis functions) of the two-step KLT schemes are

chosen such that the SER is maximized. We rely on the fully sampled dataset to

compute the SER. Alternate risk functions, which closely approximate the signal to

error ratio, have been introduced by [69] for cases when ground truth is not available.

We plan to use such risk functions for the selection of the regularization parameters

and model-order in the future. We initialize the regularized reconstruction schemes

with the gridding solution and iterate the algorithms until convergence.

2.6 Results

We initially demonstrate the utility of the continuation scheme in accelerating

the convergence. We then perform quantitative and qualitative comparisons of the

proposed scheme with the different methods listed in section V-B on the PINCAT

and invivo cardiac perfusion data sets to verify our claims.

2.6.1 Convergence of the algorithm

We first study the convergence of the optimization algorithm in the context of

the PINCAT phantom, sampled with 20 k-space spokes/frame; A = 6.4 in Figure

2.3. Here, we plot the decrease in the cost function, specified by (2.10), and the

improvement in SER of the reconstructed data as a function of the number of iter-

ations. It is seen that for lower values of β1 and β2, the algorithm converges quite

fast to the solution of Dβ1,β2 . However, this corresponds to a low SER since the

constraints in (2.12) are not satisfied. Increasing the parameters β1 and β2 ensures

that the constraints are satisfied, but results in slow convergence. We observe that

the continuation scheme, where β1 and β2 are gradually increased starting from low

values, provides a significantly improved convergence rate with good accuracy. In our

experiments, we set the TOLERANCE=10−6 to ensure good convergence.
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Figure 2.3: Convergence of the proposed continuation scheme as a function of β1
and β2. (a) indicates the evolution of the cost function specified by (2.10), while (b)
is zoomed version of (a). The change in signal to error ratio as a function of the
iterations is shown in (c) with its zoomed version in (d). Note that the convergence
of the algorithm is very slow if these parameters are chosen as high values, which
is needed for the constraints in (2.12) to be satisfied. In contrast, the algorithm
converges very fast, when these parameters are set to low values. However, the
solution of Dβ1,β2 is a poor approximation for the solution of (2.10). We observe that
by properly selecting a continuation scheme, it is possible to significantly improve the
convergence rate, while maintaining the accuracy.

2.6.2 Comparisons on the PINCAT phantom

We plot the SER v/s acceleration (A) for the various reconstruction schemes in

Figure 2.4. It is seen that k-t SLR method consistently out-performs k-t FOCUSS

and the classical KLT-based algorithms by 2-4 dB at most accelerations. We observe

that the TV regularization scheme provides comparable SER to k-t SLR at lower ac-

celeration factors, but the performance of the TV algorithm degrades significantly as
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Figure 2.4: Decay of SER as a function of acceleration on the PINCAT data. Note
that the k-t SLR scheme provides an improvement of around 2-4 dB over k-t FOCUSS
and two-step KLT based schemes at most accelerations. It is seen that the TV
scheme provides reconstructions that are similar in SER to the k-t SLR scheme at
low accelerations (A < 4). However, at higher accelerations, the TV reconstructions
exhibit significant over-smoothing and loss of spatial details as seen from Figure 2.6.

the acceleration increase. To enable visual comparisons, we show the reconstructions

of the different approaches at A ≈ 5 in Figure 2.6. The improved reconstructions

offered by k-t SLR can be easily appreciated. We now specifically focus on verifying

our claims.

2.6.2.1 Utility of the proposed spectrally regularized scheme over two-step KLT meth-

ods

We compare the reconstructions of the spectrally regularized algorithm (p =

0.1;λ2 = 0) with the two-step KLT approach in Figure 2.5. We set A ≈ 3 and

consider two different choices of the training data. Note that the accuracy of the
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k-t space sampling Reconstruction Error Temporal bases

(a) KLT based, A = 3.02, SER: 12.06 dB

(b) KLT based, A = 3.02, SER: 9.46 dB

(c) Spectral penalty (p=0.1), A = 3.2, SER: 17.44 dB

Ideal

Estimated

ky

t
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Figure 2.5: Comparison of the two-step KLT schemes (two top rows) with the spec-
trally regularized reconstruction scheme (p = 0.1, λ2 = 0), shown in the bottom row.
The sampling pattern, the peak LV frame of the reconstructed dataset, the corre-
sponding error image (shown at the same scale in all the insets), and the estimated
temporal basis functions (vi(t), i = 0 to 3) overlaid on the actual temporal basis func-
tions are shown in each column. Note that the classical KLT based schemes experience
a tradeoff between spatial aliasing and accuracy of temporal modeling. The first row
correspond to Nt = 41, where the basis functions are estimated correctly. However,
the sparse sampling of outer k-space regions results in spatial aliasing, indicated by
the dotted arrow. When the number of phase encodes in training data is reduced to
Nt = 5 in the second row, the temporal basis functions fail to capture the dynamics;
this often results in inaccurate temporal modeling of the cardiac motion, especially in
regions with significant respiratory motion (denoted by the solid arrow). The spec-
trally regularized reconstruction scheme, along with the radial sampling pattern, is
capable of accurately estimating the temporal bases and spatial weights directly from
the undersampled data. The significantly decreased errors with the spectral regular-
ization scheme proves the utility in jointly estimating the temporal basis functions
and its spatial weights.

temporal basis functions estimated with the two-step KLT schemes are dependent on

the number of phase encodes in the training data. It is seen from the second row
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(a) two-step KLT
SER: 10.22 dB

(b) k-t FOCUSS
SER: 12.64 dB

(c) Spectral penalty (p=0.1)
SER: 15.2 dB

(d) TV penalty
SER: 15.83 dB

(e) k-t SLR
SER: 17.24 dB

(f) two-step KLT: error (g) k-t FOCUSS: error (h) Spectral penalty (p=0.1):
 error

(i) TV penalty: error (j) k-t SLR: error

Figure 2.6: Performance evaluation of k-t SLR in comparison with different schemes
on the PINCAT phantom: We compare the k-t SLR (fifth column) against the best
two-step KLT scheme (first column), k-t FOCUSS (second column) and its own vari-
ants i.e, using the spectral penalty alone and the TV penalty alone (third and fourth
columns respectively). The two-step KLT scheme assumes A = 5.28, while all the
other methods provides an acceleration of A = 5.33. The reconstructed peak LV
uptake frame and the corresponding error images shown in the top and bottom rows
respectively. The two-step KLT scheme exhibits incorrect temporal modeling and
spatial aliasing, indicated by the arrow in (a)). Since the sparsity in the x− f space
is disturbed in the presence of respiratory motion, the k-t FOCUSS reconstructions
results in aliasing in regions with significant inter frame motion (see arrow in (b)).
The use of the spectral penalty alone resulting in temporal smoothing (dotted arrow
in (h)) and residual streaking artifacts due to aliasing (solid arrow in (h)). The use
of the TV scheme alone suppresses the spatial aliasing artifacts, while it loses im-
portant spatial details due to over smoothing. For instance, the border between the
myocardium and the blood pool are smeared, indicated by the dotted arrow in (i)
and the details of the ribs are smeared (solid arrow in (i)). By combining the bene-
fits of both low rank and TV schemes, the k-t SLR scheme provides more accurate
reconstructions.

of Figure 2.5 that the estimate of the temporal basis functions are poor when the

number of phase encodes in the training data is less, resulting in degradations in the

temporal dynamics. While the accuracy of the temporal basis functions is improved

when the number of phase-encodes in the training data are increased, it comes at

the expense of lower density in outer k-space; the lower k-space density results in
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Figure 2.7: Quantitative comparison of the different schemes at a range of accelera-
tions on in-vivo data. It is seen that the k-t SLR consistently provides significantly
higher SER over classical KLT based schemes and k-t FOCUSS at all accelerations.
The trend of all the methods are similar to the PINCAT comparisons. The use of TV
penalty alone is seen to provide comparable SER to k-t SLR until A ≈ 7. However,
note that the SER of the TV scheme is observed to drop at higher accelerations due
to over-smoothing, as seen from Figure 2.8.

significant spatial aliasing artifacts in the reconstructions, as seen from the first row

of Figure 2.5. Since the spectrally regularized reconstruction algorithm estimates the

temporal bases and the spatial weights directly from the undersampled data, the es-

timates are more accurate as seen from the last row of Figure 2.5.

2.6.2.2 Advantage of exploiting total variation prior, along with the spectral penalty

We direct the readers attention to the last three columns of Figure 2.6 where

we study the regularized schemes with TV penalty only, spectral penalty only, and

k-t SLR at A = 5.33. It is seen that the TV algorithm over smoothes the edges

of the myocardium in (d)). In contrast, the use of spectral penalty alone results
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in reconstructions with unsuppressed spatial aliasing and temporal smoothing (see

the residual streaking artifacts in (c) and errors due to the temporal smoothing in

(h)). The k-t SLR method, which relies on both spectral and sparsity penalties, sig-

nificantly reduces these artifacts. It provides a 2 dB improvement in SER over the

methods that rely on only spectral or sparsity penalties.

2.6.2.3 Comparison of k-t SLR with k-t FOCUSS (model based x− f scheme)

The second and fourth columns of Figure 2.6 shows the reconstructions of k-t

FOCUSS and k-t SLR at A = 5.33, using the same k-space trajectory. Since k-

t FOCUSS relies on the x − f space sparsity that is degraded in the presence of

breathing motion and contrast variations due to bolus passage, the reconstructions

exhibits significant aliasing artifacts in regions with high interframe motion.

2.6.3 Comparisons on the invivo data

We plot the SER of the in-vivo reconstructions as a function of the acceleration

in Figure 2.7. The trend is consistent with the PINCAT comparisons. Specifically,

the k-t SLR scheme provides a consistent 1-2 dB performance improvement over

classical KLT based method and k-t FOCUSS at most acceleration factors. The

visual comparisons of all the methods at A ≈ 11 is shown in Figure 2.8. In figure 2.8,

the time profiles of regions within the blood pool and the myocardium are routinely

studied and form the basis for perfusion quantification. To evaluate the accuracy

in determining these profiles, we also show the plots of the time series of specific

regions within the blood pool and the myocardium; For consistently plotting these

time series, we initially perform a registration step on the fully sampled data, such

that the chosen regions are stationary across the time frames. The deformations from

the registration step are then used to wrap the reconstructions. Next, we plot the

average signal intensity of the regions at each time frame and obtain the plots in
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figure2.8(e),(f).

Similar to our findings with the PINCAT phantom, we find significant performance

improvement of k-t SLR in comparison to the other methods in figure (2.8) that verify

our claims in V.B. Specifically, the utility of k-t SLR in obtaining close to accurate

time profiles in the blood pool and myocardial regions is of great clinical importance.

Any inaccuracies here, could lead to false analysis in the subsequent quantification

stages. For instance, the blood pool region time profiles are used to determine the

arterial input function, which forms the key component of the model fitting stage in

the perfusion quantification. The methods of KLT, k-t FOCUSS and spectral penalty

provide inaccurate time profiles in this regard. While TV provides good blood pool

curves, it loses its accuracy in determining the time profiles within the clinically

relevant myocardial region due to over smoothing; In contrast, k-t SLR provides a

close match of its time profiles with that of the fully sampled data.

2.7 Discussion

The quantitative comparisons of the different algorithms on numerical simulations

and in-vivo perfusion MRI data clearly demonstrates the ability of the k-t SLR scheme

in significantly accelerating cardiac perfusion MRI, while introducing few artifacts.

Specifically, it provides consistently improved results over current state-of-the art

approaches such as two-step KLT algorithm and the k-t FOCUSS method, which

relies on sparsity in x-f space. Since the proposed scheme learns the temporal basis

functions from the data itself, and does not make any assumptions on the x-f space

structure; it is capable of exploiting the correlations in the data, even when the

dynamics are not periodic. This property makes the proposed framework applicable

to arbitrary dynamic imaging problems.

We have cast the low rank property in a non convex form, while the TV sparsity

in the convex form. The non convex spectral penalty in our experiments have shown

to provide consistently better performance over the convex nuclear norm at a range
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of accelerations. The main reason of using the convex TV norm is to be relatively

robust to stair case like artifacts that are usually dominant, when one uses the non

convex TV norm. The non convex TV sparsity penalty introduce these artifacts in

locally smooth regions; and the voxel time series in our application of perfusion MRI

are usually smooth along time.

From our results, it is observed that using spectral penalty alone results in signifi-

cant aliasing artifacts, while the use of TV penalty alone results in considerable spatial

smoothing. By constraining the reconstructions, the proposed scheme is capable of

providing improved reconstructions. In our results, we observe that the performance

of the TV scheme is comparable to that of k-t SLR at lower accelerations. However,

the SER of the TV scheme drops significantly at higher accelerations due to excessive

spatial smoothing. This behavior is reported by earlier myocardial perfusion MRI

schemes that only rely on the TV penalty [70].

In this work, the trade-off between the problem fidelity and convergence rate in

the variable splitting strategy is addressed by the use of a continuation scheme. The

continuation scheme can have some numerical instabilities at high values of β1, β2.

To address this instability, we plan to investigate an augmented Lagrangian strategy

as proposed in [71] in the future.

We considered the reconstruction of perfusion dynamics from a single slice of the

heart in this chapter. We expect to obtain significantly improved results by jointly

recovering multiple slices from 3-D k-space acquisitions. The main reason is the signif-

icant redundancy in the temporal profiles between slices, which the k-t SLR scheme

is capable of exploiting. We also plan to address the recovery using multichannel

data. Several authors have used the spatial diversity of the coil sensitivity profiles

to accelerate cardac MRI [72, 73]. We expect that these extensions will enable k-t

SLR to provide robust high-resolution perfusion MRI data from 8-12 slices with a

temporal resolution of upto 2-3 frames per second.
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Fully sampled conventional KLT
SER: 5.59 dB

k-t FOCUSS
SER: 6.16 dB

spectral penalty
SER: 7.48 dB

TV penalty
SER: 7.48 dB

k-t SLR
SER: 7.82 dB
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Figure 2.8: Comparisons on in-vivo data: The first column shows the reconstructions of
the fully sampled data. Columns 2 to 6 show the reconstructions using the best two-step
KLT scheme, k-t FOCUSS method, spectrally regularized, TV regularized , and the k-t SLR
scheme, respectively. We choose A = 11.2 for all the methods except the two-step KLT,
which is at an acceleration of A = 10.2. Rows (a) to (c) show different spatial frames. Row
(d) shows the image time series plot corresponding to the arrow in (c); Rows (e) and (f)
respectively show the averaged signal intensity of the blood pool and myo-caridal regions
(denoted in (b)) for the registered reconstructions overlaid on the registered fully sampled
data. We observe that the reconstructions with the two-step KLT scheme exhibit spatial
aliasing (e and f). The k-t FOCUSS reconstructions exhibit shape distortions and motion
inaccuracies. These artifacts can be seen from the time series plots in (d-f), shown in the
third column. The spectrally regularized scheme with only the low rank constraint has
residual aliasing artifacts as pointed by the arrows in (a), 4th column. This has smoothing
along time as well, which can be seen from smoothening of the perfusion peaks in (e)
and (f) in the fourth column. The TV penalty scheme has over spatial smoothing and
blurring of important structures like the myocardium (see (b), fifth column), due to which
the myocardial time series are inaccurate as seen in (f), fifth column. In contrast, k-t SLR
in the last column provides efficient reconstructions, with good correlations of the blood
and myocardial region time series with the fully sampled data.
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CHAPTER 3
ACCELERATING FREE BREATHING MYOCARDIAL PERFUSION

MRI USING MULTI COIL RADIAL K-T SLR

3.1 Introduction

Our studies in the previous chapter were based on retrospective resampling of a

single coil Cartesian MPI dataset. In this chapter, we exploit the full power of the k−t

SLR algorithm by (a) extending it to account for multi-coil acquisitions and to handle

different weights for TV in space and time as done in [70], (b) using radial k-space

acquisitions, and (c) introducing a novel augmented Lagrangian optimization frame-

work to significantly improve the convergence rate. To exploit the flexibility offered by

radial sampling, we customize the sampling pattern to the proposed algorithm using

k− t radial sampling experiments on multi-coil data. We use the improved k− t SLR

algorithm to achieve quality reconstructions from undersampled radial free breathing

MPI datasets. Such acceleration will enable the improvement of volume coverage. We

design an experimental paradigm wherein accelerated reconstructions are performed

with the multi-coil k − t SLR algorithm by considering subsets of the acquired ra-

dial data. The reconstructions are tested by comparisons against the reference fully

sampled datasets. We base our studies on rest and adenosine stress datasets acquired

from two normal subjects and one patient with myocardial ischemia. We compare the

k − t SLR reconstructions with STCR (spatio-temporal constrained reconstruction)

and k − t SPARSE with SENSE.

3.2 Theory

3.3 Low rank model representation

In first pass myocardial perfusion imaging, the temporal profiles of pixels cor-

responding to specific anatomic regions (eg. myocardium, blood pool) are highly

correlated. Hence, the temporal profiles of the pixels in the dynamic dataset γ(x, t)

can be expressed as a weighted linear combination of few temporal basis functions
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Figure 3.1: The low rank Casorati matrix representation of dynamic data: The pixels
in each spatial frame of the dynamic data (a) are vectorized and represented column
wise in the Casorati matrix (b). This matrix is low rank (c) which enables the decom-
position of the dynamic data as a linear combination of few data derived orthogonal
temporal bases (Eq. 3.1). Note from (d) and (e), how the bases adapt to model the
respiratory motion in the free breathing data (see arrows in (d) that correspond to
motion). Also note that the number of bases will increase with the motion induced
temporal variations.
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vi(t):

γ(x, t) =
r−1∑

i=0

ρi(x)vi(t); r << n, (3.1)

where ρi(x) represents the model coefficients and n the number of time frames. r is

the number of temporal basis functions and x = (x, y) is the spatial location. This

model thus accounts for the similarity between the time profiles of pixels in specific

anatomic regions. The above model implies that the temporal profiles of the pixels lie

in a low-dimensional space, which is equivalent to imposing a low-rank constraint on

the Casorati matrix Γ [74] (see Fig. 1 and Eq. 3.2). The columns of Γ corresponds

to the images at different time instants, while each row of Γ is the temporal profile

of the corresponding pixel:

Γm×n =




γ(x0, t0) . . . γ(x0, tn−1)

γ(x1, t0) . . . γ(x1, tn−1)

. . . . .

γ(xm−1, t0) . . . γ(xm−1, tn−1)




; (3.2)

where m denotes the number of voxels in each frame, and n is the total number of

time frames. The correlations among the pixel time series result in linear dependen-

cies between the rows of Γ thus resulting in the matrix having a low rank specified by

r. Fig. 1 shows the low rank model representations of fully sampled free breathing

and breath held MPI datasets. Note that the model is capable of adapting to motion

induced intensity variations in the free breathing data. Furthermore, it is also impor-

tant to note that the number of basis functions required to accurately represent the

signal will increase with the motion-induced temporal variations. The proposed k− t

SLR algorithm jointly estimates the temporal basis functions vi(t) and the spatial

weights (ρi(x)) in Eq. 3.1 from the undersampled k− t measurements in an iterative

framework by solving a spectrally regularized problem; this will be described in the
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next section.

3.3.1 Radial k − t SLR with parallel imaging

The undersampled radial acquisition of sensitivity weighted dynamic perfusion

images can be modeled as: b = A(Γ)+n, where b is a concatenated vector containing

the measured non-Cartesian noisy k− t measurements for each coil. n is the additive

white noise. Γ is the m × n Casorati matrix containing the dynamic data as defined

in Eq. 3.2 (m is the total number of pixels in a frame and n is the number of

time frames). The operator A models the coil sensitivity encoding as well as Fourier

encoding on the specified radial trajectory. We determine the radial sampling pattern

that provides the best recovery with the k− t SLR algorithm based on k− t sampling

experiments using multi-coil data (section 3.3); specifically, we employ a sampling

scheme with golden ratio spacing between successive radial rays.

We formulate the recovery of Γ as a spectral and sparsity regularized optimization

problem (Fig.2):

Γ∗ = arg min
Γ
‖A (Γ)− b‖22︸ ︷︷ ︸

data consistency

+ λ1Φ(Γ)︸ ︷︷ ︸
Schatten p-norm

+ λ2Ψ(Γ)︸ ︷︷ ︸
spatiotemporal TV norm

. (3.3)

Here, the non-convex Schatten p-norm Φ(Γ) is the surrogate for the rank defined as:

Φ(Γ) = (‖Γ‖p)p =
n−1∑

j=0

σpj ; p < 1; (3.4)

where σj are the singular values of Γ (elements of the diagonal matrix Σn×n) in

the singular value decomposition: Γ = Um×nΣn×nV
H
n×n. Ψ(Γ) is the spatio-temporal

total variation norm and is the surrogate for spatio-temporal smoothness of Γ defined

as :

Ψ(Γ) =

∣∣∣∣
∣∣∣∣
√
|∇x(Γ)|2 + |∇y(Γ)|2 + α|∇t(Γ)|2

∣∣∣∣
∣∣∣∣
1

; (3.5)
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Figure 3.2: k − t SLR with parallel MRI for accelerated imaging: The perfusion
images are acquired using multiple coils and radial sampling with golden angle ray
spacing (a). k − t SLR exploits the low rank and smooth spatio-temporal properties
of perfusion data by utilizing the non-convex Schatten p-norm (p<1) and the spatio-
temporal total variation norm (b). The reconstruction in (b) is formulated as a
spectral and sparsity penalized optimization problem; the coil sensitivity encoding in
combination with radial sampling improves data consistency in the formulation.
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where ∇x,∇y,∇t are the difference operators along the x, y and t dimensions. The

factor α ≥ 1 controls the relative weight of the temporal and spatial gradients, and

‖‖1 denotes the `1 norm. λ1 and λ2 in Eq. 3.3 are the regularization parameters that

control the balance between the two norms and the data fidelity.

3.3.2 Fast augmented Lagrangian (AL) algorithm

The penalty terms in Eq. 3.3 are non-differentiable. Hence, the use of gradient

based schemes to solve Eq. 3.3 will result in prohibitively slow convergence. In

addition, since a non-convex spectral penalty is used, this approach can result in

the solution being trapped in the local minima of the criterion. To overcome these

problems, we employ an augmented Lagrangian (AL) optimization algorithm with

continuation [75].

A variable splitting technique is used to reformulate the unconstrained optimiza-

tion problem in Eq. 3.3 to the constrained optimization problem in Eq. 3.6. This

splitting enables us to decouple the non-quadratic penalties from the quadratic data

term; the complex problem is decoupled into a sequence of simpler subproblems.

arg min
Γ,S,T

||A(Γ)− b||22 + λ1(||S||p)p + λ2

∥∥∥
√
|T1|2 + |T2|2 + α|T3|2

∥∥∥
1

; (3.6)

subject to.,Γ = S;


T1

T2

T3


︸ ︷︷ ︸

T

=


∇x(Γ)

∇y(Γ)

∇t(Γ)


︸ ︷︷ ︸
∇·Γ

;

We now use the AL method to solve the above constrained optimization problem.

Specifically, the constraints are enforced using quadratic penalty terms and Lagrange

multiplier terms X and Y, as shown in the appendix. The strength of the quadratic

penalty terms are specified by β1 and β2, respectively. The main benefit in using the

AL scheme is that β1 and β2 does not have to be taken to∞ to enforce the constraints;
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the algorithm converges slowly when β1 and β2 are high. We show in the appendix

that the AL scheme simplifies to the algorithm shown below (also illustrated in Fig.

9). Note that the algorithm involves the alternation between simple steps, which are

implemented efficiently. The pseudo code of the algorithm is given below:

Initialization: Γ0 = AT (b), β1 = 1
max(Σ0)

, β2 = 1
|max(Γ0)| ; Σ0 is a matrix containing

the singular values of

Γ0;

while (|costn− costn−1|/|costn| < 10−6) ; stopping rule (cost as defined in Eq. (3.3);

Γn ←(A.1); regularized SENSE problem solved by conjugate gradients;

Sn ←(A.2); singular value shrinkage;

Tn ←(A.3); total variation shrinkage;

Xn ←(A.4); linear update rule;

Yn ←(A.5); linear update rule;

if (|costn − costn−1|/|costn| < 10−1)

β1 = β1 ∗ 1.2, β2 = β2 ∗ 1.2; continuation

end

end

The algorithm employs a continuation strategy where the β1, β2 parameters are

initialized to small values, and are gradually incremented when the cost in Eq. (3.3)

stagnates to a threshold level of 10−1. This strategy is similar to homotopic like

continuation schemes employed to solve non convex problems [76]. We observed

the continuation scheme to be a key aspect in avoiding convergence to local minima

solutions. The proposed algorithm was implemented on a desktop system with 47 GB
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RAM, 24 core Intel Xenon E5645 2.4 GHz processors, an NVDIA Tesla C2075 (5 GB

RAM) graphical processing unit, and Matlab R2012a 64 bit with Accelereyes Jacket

v2.2. Jacket is a library that enables computations on the GPU within Matlab using

NVIDIA CUDA. Thanks to the fast convergence of the AL scheme and the fast GPU

computations, the reconstructions of large multi-coil data sets (of sizes: [Nx ×Ny ×

Nt×L : 256×256×60×4]) with the k−t SLR algorithm takes about 1-2 minutes of run

time. In this work we considered pre-interpolation of the radial data onto Cartesian

grid points that were within 0.5 unit of a measured sample. This facilitated the

use of Fast Fourier Transforms (FFTs) in the forward and backward models of the

iterative algorithm. We did not observe any noticeable change in the quality of the

reconstructions by using the preinterpolated data with FFTs when compared to using

the nonuniform radial data with NUFFTs, INUFFTs in the iterative algorithm, as

also noted in [70] .

3.4 Materials and Methods

3.4.1 Multi-coil radial acquisition of free breathing
myocardial perfusion data

Two normal subjects and one patient with cardiac disease were scanned at the

University of Utah, in accordance with the institutional review board. Data was

acquired with a perfusion radial FLASH saturation recovery sequence (TR/TE ≈

2.6/1.2 ms, 3 slices per beat, flip angle of 14 degrees, 2.3 × 2.3 × 8 mm voxel size,

FOV: 280 mm2, Bandwidth 1002 Hz/pixel ) on a Siemens 3T Trio scanner [77].

72 radial rays equally spaced over π radians and with 256 samples per ray were

acquired for a given time frame and a given slice. These rays were acquired in an

interleaved manner in subsets of 6 rays each. The rays in successive frames were

rotated by a uniform angle of π/288 radians, which corresponded to a period of 4

across time (see Fig. 3.4) . Data was acquired with the Siemens cardiac coil array

and combined into four coils. For coil sensitivity estimation, the complex valued k
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space measurements from each coil were averaged along time. From the resultant

time averaged image data, the complex valued sensitivity estimates were obtained by

dividing each component coil image by the root of sum of absolute squared intensities

from all the coils.

Rest data sets were acquired after a Gd bolus administration of 0.02 mmol/kg.

Stress data sets were acquired with an adenosine infusion, where 0.03 mmol/kg of Gd

contrast agent was injected after 3 minutes of infusion. A total of three rest and three

stress data sets were used in this study. A SENSE based reconstruction with mild

regularization based on spatio-temporal total variation (TV) constraints was used to

resolve residual aliasing in the acquired data. The regularized SENSE reconstructions

still contained background noise which was denoised by using a block matching 4-D

(BM4D) denoising filter [78] - these denoised images formed the reference datasets.

3.4.2 Undersampled reconstruction with different
algorithms

The acquisition described in the previous section had a compromise in the slice

coverage (3 slices). In order to demonstrate that the slice coverage of such an acquisi-

tion could be further increased, retrospective accelerated experiments were performed.

Undersampled reconstructions were performed by different reconstruction algorithms

by considering subsets of the measured data. Specifically, the performance of the k−t

SLR, STCR [70], low rank, and k−t SPARSE/SENSE [16] algorithms were compared.

The comparisons were done at various acceleration levels by considering different num-

bers of subsets of the measured data that used 24 to 15 rays/frame. The quality of

these reconstructions were evaluated against the above reference datasets. All the

algorithms relied on the knowledge of coil sensitivities. STCR was implemented by

considering λ1 = 0 in k − t SLR. The low rank penalty based reconstruction was

implemented by considering λ2 = 0 in k − t SLR. k − t SPARSE/SENSE was imple-

mented by minimizing the l1 norm of the signal in the spatial-spectral (x− f) space.
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All the algorithms were optimized for the regularization parameters that gave the

maximum signal to error ratio (SER) between the reconstructions and the reference

data:

SERROI = −10 log10

Σn
i=1

(
‖Γrecon,i−Γref,i‖2F

‖Γref,i‖2F

)

n
; (3.7)

where n is the number of time frames. During this optimization, the SERROI metric

was evaluated only in a field of view that contained regions of the heart. This was

motivated by recent findings in [79], and by our own experience in determining a

quantitative metric that best describes the accuracy in reproducing the perfusion

dynamics in different regions of the heart, and the visual quality in terms of preserving

crispness of borders of heart, and minimizing visual artifacts due to reconstructions.

The details of optimization of the regularization parameters in this work are described

in the appendix section.

3.4.3 Simulations to determine an optimal radial
sampling trajectory

The quality of the reconstructed data is dependent on the specific sampling strat-

egy. With the objective of choosing a radial pattern that provides good recovery, the

performance of different sampling trajectories were studied. As described in section

3.1, the reference 72 ray data sets were acquired using radial rays uniformly spaced

within each frame, and uniform rotations across frames. To simulate undersampling,

subsets of the acquired data were chosen based on the following three families of

radial sampling trajectories (see Fig. 3.4):

1. uniform spacing of radial rays within a frame, with uniform rotations across

frames.

2. completely random spacing of radial rays within a frame.

3. golden ratio spacing of (π/1.618) between successive rays1.

1Since the rays from the 72 ray data were uniformly spaced, subsampling of rays was done such
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The performance of the low rank, STCR, k − t SLR reconstruction algorithms were

compared with each of the above sampling scenarios. The performance was studied

at different undersampling factors by considering 24, 21,18, 15 rays/frame.

3.4.4 Metrics used for quantitative comparison

The reconstructions of the different algorithms were quantitatively compared

based on the following three metrics (also see Fig. 7 )

• Signal to Error ratio in a region of interest containing the heart (SERROI):

As described in Eq.(5.9), this metric gives a measure of overall accuracy in

reproducing the spatio-temporal dynamics in the regions of the heart.

• Normalized high frequency error metric (HFEN): The HFEN metric gives a

measure of the quality of fine features, edges, and spatial blurring in the images.

We adapt this metric from [80] which is defined as:

HFENROI = −10 log10

∑n
i=1

(
‖LoG(Γref,i)−LoG(Γrecon,i)‖22

‖LoG(Γref,i)‖22

)

n
, (3.8)

where LoG is a Laplacian of Gaussian filter that capture edges. We use the

same filter specifications as in [80]: kernel size of 15×15 pixels, with a standard

deviation of 1.5 pixels. We evaluate this metric in a square region of interest

containing the heart.

• Signal to error ratio of temporal curves in the left ventricle (SERTC): This metric

gives a measure of accuracy in reproducing the temporal dynamics in the left

ventricular blood pool and myocardium. It also quantifies temporal blurring. To

evaluate this metric consistently, the reference data sets were initially registered

to estimate the deformation maps that correspond to breathing motion. For

that they approximately follow the golden angle distribution.
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registration, we employed the non-rigid demons registration algorithm [81] using

the normalized cross correlation as the similarity metric. Starting from the

second frame, the deformations were obtained by matching the nth frame in

the moving sequence to the (n − 1)th frame of the deformed sequence. The

deformation maps were used to warp the reconstructions, after which the time

intensity profiles in the region of interest of left ventricular blood pool and

myocardium region of interests were evaluated. The SERTC metric is evaluated

as:

SERTC = −10 log10

∑k
i=1

(
‖TC(W·Γref,i)−TC(W·Γrecon,i)‖22

‖TC(W·Γref,i)‖22

)

k
, (3.9)

where TC is an operator that extracts the time curves for a specified pixel in

the left ventricle; k is the total number of pixels in the left ventricle. W is an

image warping operator that applies the deformation maps corresponding to

breathing motion to the reconstructions.

3.4.5 Qualitative evaluation: clinical scoring

In addition to the quantitative validation, we also performed a qualitative analysis

by obtaining clinical scores from a cardiologist with 15 years of cardiac MRI experi-

ence. Image quality and artifact assessment was performed on the reference images

reconstructed from the 72 ray acquisition, and on the k− t SLR images reconstructed

from 24 ray subsampled data. The grading scale was (5-1, highest quality to lowest

quality). All the images were presented as 4 image sets with each set containing time

series of 3 slices for both stress and rest. Image sets from a patient with decreased

perfusion and from two normal subjects were presented to the cardiologist in a blinded

fashion in a random order.
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Figure 3.3: Convergence analysis: (a) Cost in Eq.3.3 v/s GPU run time, (b) Region of
interest signal to Error ratio (SERROI) as defined in Eq.5.9 in (dB) v/s GPU run time.
From (a), (b), it can be seen that k− t SLR has a faster convergence (by a factor of 4) with
the augmented Lagrangian (AL) algorithm in comparison to the previous implementation
without the Lagrange multiplier updates. The converged reconstruction in (b) show that
the radial streaking artifacts are fully resolved. The SERROI is evaluated in a square region
of interest containing the heart as depicted in (b).

3.5 RESULTS

3.5.1 Convergence analysis

In Fig.3.3, the convergence behavior of the k − t SLR algorithm is shown. Here,

undersampled reconstructions were performed with golden ratio sampling using 24

rays/frame. As seen in Fig.3.3, our previous implementation of k − t SLR [82] that

relied solely on the increments of (β1, β2 towards ∞) had a slow convergence. In

contrast, the proposed AL method had a faster convergence, and did not require high

values of β1, β2 for convergence. The initial values of the continuation parameters

were {β1, β2 = 103, 105}, while the final values (at convergence) with and without AL

respectively were: {β1, β2 ≈ 106, 108}, {β1, β2 ≈ 109, 1011}. From Fig.3.3, it can also

be seen that the streaking artifacts were fully resolved with the proposed k-t SLR
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algorithm.

3.5.2 Simulations to determine an optimal radial
trajectory

The comparisons of different radial sampling methods are shown in Fig. 4. From

the SER plots, it is observed that the low rank method does not perform as well with

uniform sampling. This is expected since uniform sampling results in more repeated

k-space measurements at the same locations in k-space and has less incoherency. In

contrast, the STCR method is insensitive to the pattern, as long as the completely

random pattern is not used. When the low rank and total variation penalties are

merged into k − t SLR, the golden ratio patterns provide better results than the

completely random sampling pattern or the uniform pattern. This observation is

consistent with the findings reported in the context of standard compressed sensing

[83], [84]. From these simulations, the golden ratio sampling pattern was found to be

optimal, and therefore was used for undersampling in all the algorithms.

3.5.3 k − t SLR compared to other MPI acceleration
schemes

In Fig. 3.5, the comparisons of MPI reconstructions using different algorithms

from 21 ray undersampled data are shown. These comparisons are from a rest acqui-

sition on a normal subject with breathing motion. The k−t SPARSE/SENSE method

was observed to be sensitive to the breathing motion, and yielded motion related ar-

tifacts as depicted both in the temporal curves and the error images of Fig. 3.5 (b).

The low rank reconstruction was more robust to breathing motion, when compared

to k − t SPARSE/SENSE. However, it had poor temporal fidelity especially during

the contrast uptake frames. This is depicted from temporal curve blurring during

contrast uptake, and also in the error images of Fig. 3.5(c). STCR had better tem-

poral fidelity, thus preserving contrast dynamics and motion. However edge blurring

and patchy artifacts were evident. The k − t SLR algorithm preserved the temporal
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(ii) Stress data
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Figure 3.6: Example comparisons of different MPI acceleration algorithms using rest (i)
and stress (ii) perfusion data from a patient with myocardial ischemia. The image frames in
the first three columns respectively correspond to peak right ventricular blood enhancement,
transition between right ventricle and left ventricle, and peak myocardial wall enhancement.
During stress, the patient showed reduced contrast uptake in the inferior myocardium wall
due to ischemia (see red arrows in (ii.a)). The time curves correspond to the regions
depicted in i.a, ii.a). The k − t SLR reconstructions were observed to be less sensitive to
artifacts observed with other methods. Specifically k-t SPARSE/SENSE yielded motion
blur artifacts (see arrows in i.b, ii.b, and the time curves), low rank method had some
temporal blur especially during peak contrast frames (see arrows in ii.c, ii.d, and the time
curves). STCR exhibited patchy artifacts (see arrows in (i.d) and (ii.d)). k − t SLR had
better quality across all frames in comparison to the other methods. We also observe that
the regions of low contrast uptake to be well preserved in the k-t SLR reconstructions.
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Subject id Rest/Stress Quantitative 
metric (dB)

k-t 
SPARSE/
SENSE

Low rank STCR k-t SLR

Subject 1
(Patient 

with 
ischemia)

Rest

SERROI 15.85 18.43 20.19 21.96

HFENROI 7.55 11.82 12.19 13.00

SERTC 16.62 21.06 22.45 23.88

Stress

SERROI 15.91 18.58 21.50 22.49

HFENROI 7.77 11.26 12.35 13.25

SERTC 14.62 16.58 22.73 23.37

Subject 2
(Normal)

Rest

SERROI 15.18 17.09 18.86 20.01

HFENROI 8.28 10.62 11.53 12.90

SERTC 15.28 17.57 20.45 20.89

Stress

SERROI 15.86 17.88 19.1 19.56

HFENROI 8.09 10.72 11.21 11.68

SERTC 16.49 18.11 19.40 19.40

Subject 3
(Normal)

Rest

SERROI 16.09 17.08 19.28 19.98

HFENROI 7.46 9.22 11.56 12.08

SERTC 17.06 19.22 23.31 23.30

Stress

SERROI 16.5 17.33 20.02 20.43

HFENROI 7.5 9.78 12.11 12.31

SERTC 17.43 20.52 23.35 23.31

Region of interest 
(ROI) where    
SERROI and 

HFENROI are 
evaluated

Left ventricular 
region 

where SERTC is 
evaluated

Figure 3.7: Quantitative comparison of reconstructions from undersampled radial data (21
rays/frame) using different algorithms.
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fidelity and had less smoothing of edges and less patchy artifacts as depicted in Fig.

3.5(e). From this figure, it is also observed that the performance of k − t SLR is

comparable to that of STCR in the frames corresponding to contrast uptake. This is

expected since the presence of contrast makes the images more or less piece wise con-

stant and the SNR high. However, k− t SLR provides better suppression of artifacts

in the pre and post contrast frames. Additionally, from Fig.3.5, it can be seen that

the quantitative metrics correlate well with the visual comparisons. Specifically in

comparison to k− t SLR, the SERTC metric were low with the k− t SPARSE/SENSE

and low rank methods due to temporal blurring, while the HFENROI metric in STCR

was low due to spatial smoothing. The SERROI metric was higher with k − t SLR

than the other algorithms due to a better overall image quality.

In Fig. 3.9, the comparisons of the algorithms on rest and stress data sets from

a patient with ischemia are shown. Under stress conditions, this patient exhibited

a reduction in the uptake of the contrast dynamics in the inferior wall of the my-

ocardium. The patient was able to breath normally during rest, however breathed

heavily during stress. The reconstructions are shown using 21 radial rays/frame. We

observed similar trade offs amongst the methods. Specifically, k−t SPARSE was sen-

sitive to breathing, and the low rank method yielded reduced temporal fidelity during

contrast uptake. STCR showed patchy artifacts in some frames, but was robust to

motion. k − t SLR was robust to motion and had less patchy artifacts. Similar to

Fig. 3.5, all the quantitative metrics correlate well with the visual observations.

Figure.3.7 summarizes the quantitative comparisons of all the algorithms across all

the datasets using 21 rays/frame. From this figure, it is observed that the performance

of k− t SLR was consistently better than the other algorithms across all the datasets.

3.5.4 Qualitative evaluation by a cardiologist

The clinical scores are presented in table 1. With the patient, the clinician was able
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to identify the ischemia in the inferior myocardium wall in both the reference and k−t

SLR reconstructions (see Fig. 3.8). More specifically, he confidently identified reduced

blood flow in both the rest and stress scans of the reference data set. With the k − t

SLR images, he found the ischemic defect to be evident in the stress reconstruction,

and border line positive in the rest reconstruction. After looking at the delayed

enhancement images, the clinician classified these ischemic regions as infarction. With

the normal subjects, the quality scores of the k− t SLR reconstructions were in close

agreement with the reference images. No dark rim artifacts were observed in all the

images. Slight residual streaking artifacts were present with the k − t SLR method

in one of the normal subjects. However, these artifacts were outside the field of view

of the heart, which the cardiologist was not very concerned about.

3.5.5 Prospectively undersampled radial data:

An experiment with multi slice acquisition using prospectively undersampled ra-

dial data was performed. Data was acquired with the same FLASH sequence as de-

scribed above, although 5 slices were imaged after each saturation pulse [70]. Seven

slices per beat, and 30 rays/frame with a golden angle spacing between successive

rays were acquired using a 32 coil cardiac array. Here, golden ratio sampling was

employed based on our k-t sampling experiments. A healthy subject was scanned

during rest conditions as described above. The subject was not able to maintain a

steady breath hold during the entire scan, and the data contained motion. Prior to

reconstruction, a PCA based coil compression strategy [85] was used to compress the

32 coil data set to four principal component data set. The PCA coil compression

was used to facilitate reconstruction without incurring a high computation cost and

memory requirements associated with the 32 coils. As reported in [86], and also from

our observation, about 4-5 principal components were enough to capture most of the

variance in the data, which motivated us to use 4 coils for processing this data.
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Subject id Reconstruction Rest Stress Presence of disease
Quality score Quality score

Subject 1 Reference 4 4 positive
Subject 1 k-t SLR 4 4 positive

Subject 2 Reference 4 4 negative
Subject 2 k-t SLR 3.75 3.75 negative

Subject 3 Reference 4 4 negative
Subject 3 k-t SLR 4 4 negative

Table 3.1: Quality scores from a cardiologist on three subjects

3.5.5.1 k − t SLR reconstructed multi-slice images

In the below figure, we show the k-t SLR reconstructed images from the above

acquisition experiment with multiple (seven) slices coverage using 30 rays/frame. We

observe that the k-t SLR reconstructions provided improved heart coverage with good

spatio-temporal resolution.

Acquiring multiple slices during a single saturation pulse has shown to be more

efficient as it minimizes the time spent for saturation [9, 70]. However, this comes at

an expense of different slices having different saturation recovery times, and hence

different intensities as seen in the figure below. As recommended in [70], the slices

could be analyzed separately and be scaled to have similar intensities.

3.6 Discussion

In this chapter, the feasibility of k − t SLR in providing robust free breathing

MPI reconstructions at high acceleration levels was evaluated. This study considered

retrospectively accelerating free breathing MPI datasets that were acquired using 72

radial rays/frame at 2.3 mm2 in plane resolution and 3 slices. The results of obtaining

good fidelity k − t SLR reconstructions from highly undersampled data suggest that

k − t SLR could be used to improve the slice coverage and the spatial resolution
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Figure 3.9: Example k-t SLR reconstructed multi slice 2D first-pass myocardial perfusion
images on a healthy subject. The numbers on the images indicate the time instants of the
dynamic perfusion acquisition. The subject could not maintain a steady breathhold during
the entire scan, due to which the data contained motion content. These reconstructions
demonstrate good spatial and temporal resolution with extended volume coverage of the
heart.
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in a prospective acquisition. For a reliable quantification of perfusion parameters

from free breathing MPI data, it should be noted that the breathing motion should

be compensated. In this work, we used a basic non-rigid registration algorithm to

correct for the breathing motion, and analyzed the temporal curves in the registered

reconstructions. The results show that the temporal profiles from the undersampled

k − t SLR reconstructions match well with the temporal profiles from the reference

reconstructions. This suggests that the good temporal fidelity of the k − t SLR

reconstructions may lead to reliable estimation of quantitative perfusion parameters.

All the reconstruction algorithms considered in this work were based on non-linear

reconstruction strategies. Unlike the classical linear k-t reconstruction strategies, the

performance of these algorithms cannot be characterized by a single point spread

function [87]. To analyze the performance of the nonlinear algorithms, this study

relied on quantitative metrics that gave a measure of overall spatio-temporal fidelity,

image sharpness, and temporal accuracy. Our comparisons against MPI accelerated

schemes show that the k − t SLR scheme is capable of reducing motion blurring and

edge smoothing artifacts. In general, the k − t SLR algorithm benefited from total

variation sparsity regularization in being robust to temporal and spatial smoothing.

The STCR method performed well in regions where the signal was piece wise constant

both spatially and temporally - or equivalently during peak contrast frames and

datasets with less motion. However, it was observed during the pre and post contrast

frames, STCR yielded patchy artifacts and edge blurring. In such scenarios, k − t

SLR provided more robust and natural textures and less edge blurring. During the

peak contrast frames, the use of the low rank regularizer alone yielded temporal blur,

which was minimized with k − t SLR.

During this study, we observed that performance evaluation using the noisy SENSE

based reconstructions as reference datasets were not conclusive since the noise in these

reconstructions were higher than the subtle differences between the different recon-
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struction methods. To address this, we denoised the SENSE based reconstructions

using the block matching 4D (BM4D) denoising algorithm. The BM4D algorithm

is reported to give state of the art denoising performance. The algorithm performs

denoising by exploiting nonlocal similarities of spatio- temporal patches. Since the

BM4D algorithm is very different from all the reconstruction algorithms considered

in this work, the performance comparisons are free from any bias. In addition, the

BM4D algorithm has an automatic selection of parameters based on the estimation

of the noise level, which minimizes the risk of subjectivity.

During the review of the contents of this chapter submitted as a paper, it was

suggested that breath held data sets from a second injection could be used as reference

ground truth images. The main challenge however would be to perform a good

registration between the undersampled free breathing reconstructions and the breath

held datasets for a head to head comparison; this is difficult due to out of plane motion,

especially when only a few slices are imaged. In addition, any residual contrast from

the first bolus may bias the comparisons. In this context, we believe that the usage

of the free breathing datasets as reference sets would better fit to the goals of the

current work.

In this study, optimization of λ1, λ2 in k− t SLR was performed with a fixed value

of p = 0.1 and α = 4. The choices of p and α were motivated by empirical observations

and worked well in practice for free breathing MPI data. A thorough search in a 4-

dimensional space of p, α, λ1, λ2 could improve the k − t SLR reconstructions. The

automatic tuning of regularization parameters for iterative nonlinear reconstruction

algorithms is an actively researched area. There exists some strategies such as cross

validation [88], and Stein unbiased risk estimator (SURE) methods [89]. In the future,

we plan to investigate the adaption of one of these methods to our setting.

The performance of all the nonlinear iterative reconstruction algorithms in this

study were evaluated based on quantitative metrics that gave measures of image
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sharpness, temporal blurring, and overall mean square error. Recently, the resolution

of reconstructed images from nonlinear algorithms were characterized by determining

the local point spread functions at every image pixel [90]. Such an analysis could be

adapted to our setting to characterize the resolution of the images from the different

algorithms.

The augmented Lagrangian optimization algorithm used in this study was found

to provide fast convergence. Speed up factors of about four were observed when

compared to the previous implementation of k−t SLR. In this study, we used a simple

sum of squares approach [91] to estimate the coil sensitivities from time averaged

data. In the future, we plan to consider other extensions for better estimations such

as moving window approaches for time varying sensitivities, and/or joint estimation

of the sensitivities along with the reconstructions [92].

The current study has limitations in that data from only three subjects were used

for analysis. To fully evaluate the clinical feasibility of k− t SLR and draw statistical

conclusions, a study with a cohort of patient datasets is needed with validation against

gold standard coronary x-ray angiography.

3.7 Appendix

3.7.1 Augmented Lagrangian (AL) algorithm steps

In this section, the derivation of the AL subproblems is described. Referring to

Eq. 3.6, the constraints are enforced using Lagrange multiplier terms and quadratic

penalties. The resulting optimization objective (termed as the AL function) is speci-

fied by:

Dβ1,β2(Γ,S,T; X,Y) = (3.10)

||A(Γ)− b||22 + λ1(||S||p)p + λ2

∥∥∥
√
|T1|2 + |T2|2 + α|T3|2

∥∥∥
1

+
β1
2
||Γ− S||22 +

β2
2
||∇ · Γ−T||22



www.manaraa.com

70

+β1 < X,Γ− S > +β2 < Y,∇ · Γ−T >;

where X,Y are matrices of Lagrange multipliers. β1 and β2 are the penalty param-

eters that determine the equivalence of Eq. 3.10 to Eq. 3.6, and hence the original

problem in Eq. 3.3. In our earlier implementation [82], we only relied on the quadratic

penalty terms in Eq. 3.10 (second line of Eq. 3.10) to enforce the constraints in Eq.

3.6 due to which β1 and β2 were tended to ∞ and resulted in slow convergence. The

main advantage of using the Lagrange terms (last line of Eq. 3.10) rather than enforc-

ing the constraints using penalties alone is that the parameters β1, β2 need not tend

to ∞ for the constraints in Eq. 3.6 to hold, which allows for a faster convergence.

All the five variables in Eq. 3.10 are estimated using an alternating minimization

algorithm. Specifically, we minimize the AL objective function in Eq. 3.10 alternately

with respect to one variable at a time, assuming the other to be fixed. This approach

simplifies the original problem to a sequence of well understood sub-problems. These

subproblems are shown in Fig.9. In essence, the algorithm cycles through: (a) reg-

ularized SENSE problem solved by conjugate gradient algorithm, (b) singular value

shrinkage, (c) total variation shrinkage, and (d,e) linear update rules of the Lagrange

multipliers. Additionally, a continuation strategy is employed where the parameters

β1 and β2 are initialized with small values and are gradually incremented. This con-

tinuation strategy was observed to be a key aspect in avoiding convergence to local

minima [19].

3.7.2 Choosing the regularization parameters

The k − t SLR algorithm depends on four parameters: λ1, λ2, α, p. Since it is

impractical to tune for these parameters in a four dimensional space, we restrict

ourselves to a simpler approach. The values of p and α were fixed to p = 0.1 and

α = 4 based on empirical observations on free breathing MPI data. With the fixed

values of α, p, we tune for λ1, λ2 in a 2D space. We tuned for λ1, λ2 for the rest
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Figure 3.10: The augmented Lagrangian frame work with the different sub problems. The
original problem in (3.3) is broken into a series of multiple simpler problems by using the
augmented Lagrangian framework. Specifically, the algorithm iterates between the steps
of regularized SENSE (that is solved by the method of conjugate gradient (CG)), singular
value shrinkage, shrinkage and update rules for Lagrange multipliers. These steps are all
solved by simple operations.

and stress datasets from a single subject. The parameter optimization is shown in

Fig. 10, where a rest dataset is recovered using 21 radial rays/frame. The SERROI

plot in Fig. 10 was evaluated for the values of λ1, λ2 in the window: 0.6554︸ ︷︷ ︸
2562×10−5

×

[0, 6× 10−2, 9× 10−2, 3× 10−1, 6× 10−1, 9× 10−1, 3, 6]. The optimal values of λ1, λ2

were chosen such that the SERROI was the maximum. The values of λ1, λ2 varied

slightly for the rest and stress datasets. Since all the subjects were scanned with the

same protocol under shallow breathing, we used the same values of λ1, λ2 tuned for

the first subject for reconstruction of all the other datasets. The total time spent for

tuning the regularization parameters was approximately two hours.
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Figure 3.11: Tuning of the regularization parameters λ1 and λ2. The SER was evaluated
in a field of view containing the regions of the heart. The optimal parameters were chosen
corresponding to the region where the SER between the reconstruction and the reference
data set was maximum.
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CHAPTER 4
BLIND COMPRESSIVE SENSING DYNAMIC MRI

4.1 Introduction

In the previous two chapters, we have developed improved low rank and sparsity

based methods to address the limitations of modeling using predetermined bases such

ad Fourier bases (x-f structure/sparsity based methods). In the low rank models, since

the basis functions are estimated from the data itself and no sparsity assumption is

made on the coefficients, these schemes can be thought of blind linear models (BLM).

These methods have been demonstrated to provide considerably improved results in

perfusion [18, 93, 94] and other real time applications [95]. However, one challenge

associated with this scheme is the degradation in performance in the presence of very

large inter-frame motion. Specifically, large numbers of temporal basis functions are

needed to accurately represent the temporal dynamics, thus restricting the possible

acceleration. In such scenarios, these methods result in considerable spatio-temporal

blurring at high accelerations [18, 96, 97]. The number of degrees of freedom in the

low-rank representation is approximately1 Mr, where M is the number of pixels and

r is number of temporal basis functions or the rank. The dependence of the degrees of

freedom on the number of temporal basis function is the main reason for the tradeoff

between accuracy and achievable acceleration in applications with large motion.

In this chapter, we introduce a novel dynamic imaging scheme, termed as blind

compressive sensing (BCS), to improve the recovery of dynamic imaging datasets

with large inter-frame motion. Similar to classical CS schemes [15, 40, 98], the voxel

intensity profiles are modeled as a sparse linear combination of basis functions in a dic-

tionary. However, instead of assuming a fixed dictionary, the BCS scheme estimates

the dictionary from the undersampled measurements itself. While this approach of

estimating the coefficients and dictionary from the data is similar to BLM methods,

1Assuming that the number of pixels is far greater than the number of frames, which is generally
true in dynamic imaging applications.
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Figure 4.1: Comparison of blind compressed sensing (BCS) and blind linear model (BLM)
representations of dynamic imaging data: The Casorati form of the dynamic signal Γ is
shown in (a). The BLM and BCS decompositions of Γ are respectively shown in (b) and (c).
BCS uses a large over-complete dictionary, unlike the orthogonal dictionary with few basis
functions in BLM; (R > r). Note that the coefficients/ spatial weights in BCS are sparser
than that of BLM. The temporal basis functions in the BCS dictionary are representative of
specific regions, since they are not constrained to be orthogonal. For example, the 1st, 2nd
columns of UM×R in BCS correspond respectively to the temporal dynamics of the right
and left ventricles in this myocardial perfusion data with motion. We observe that only 4-5
coefficients per pixel are sufficient to represent the dataset.

the main difference is the sparsity assumption on the coefficients. In addition, the

dictionary in BCS is much larger and the temporal basis functions are not constrained

to be orthogonal (see figure 4.1). The significantly larger number of basis functions in

the BCS dictionary considerably improves the approximation of the dynamic signal,

especially for datasets with significant inter-frame motion. The number of degrees of

freedom of the BCS scheme is Mk + RN − 1, where k is the average sparsity of the

representation, R is the number of temporal basis functions in the dictionary, and N

is the total number of time frames. However, in dynamic MRI, since M >> N the
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degrees of freedom is dominated by the average sparsity k and not the dictionary size

R, for reasonable dictionary sizes. In contrast to BLM, since the degrees of freedom

in BCS is not heavily dependent on the number of basis functions, the representation

is richer and hence provide an improved trade-off between accuracy and achievable

acceleration.

An efficient computational algorithm to solve for the sparse coefficients and the

dictionary is introduced in this chapter. In the BCS representation, the signal matrix

Γ is modeled as the product Γ = UV, where U is the sparse coefficient matrix V

is the temporal dictionary. The recovery is formulated as a constrained optimization

problem, where the criterion is a linear combination of the data consistency term and

a sparsity promoting `1 prior on U, subject to a Frobenius norm (energy) constraint

on V. We solve for U and V using a majorize-minimize framework. Specifically,

we decompose the original optimization problem into three simpler problems. An

alternating minimization strategy is used, where we cycle through the minimization

of three simpler problems. The comparison of the proposed algorithm with a scheme

that alternates between sparse coding and dictionary estimation demonstrates the

computational efficiency of the proposed framework; both methods converge to the

same minimum, while the proposed scheme is approximately ten times faster. We

also observe that the proposed scheme is less sensitive to initial guesses, compared

to the extension of the K-SVD scheme [99] to under-sampled dynamic MRI setting.

It is seen that the `1 sparsity norm and Frobenius norm dictionary constraint en-

ables the attenuation of insignificant dictionary basis functions, compared with the `0

sparsity norm and column norm dictionary constraint used by most dictionary learn-

ing schemes. This implicit model order selection property is important in the under

sampled setting since the number of basis functions that can be reliably estimated is

dependent on the available data and the signal to noise ratio.

The proposed work has some similarities to [80], where a patch dictionary is
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learned to exploit the correlations between image patches in a static image. The key

difference is that the proposed scheme exploits the correlations between voxel time

profiles in dynamic imaging rather than redundancies between image patches. The `0

norm sparsity constraints and unit column norm dictionary constraints are assumed in

[80]. The adaptation of this formulation to our setting resulted in the learning of noisy

basis functions at high acceleration factors. Similar to [100], the setting in [80] permits

the reconstructed dataset to deviate from the sparse model. The denoising scheme is

well-posed even in this relaxed setting since the authors assume overlapping patches;

even if a patch does not have a sparse representation in the dictionary, the pixels in the

patch are still constrained by the sparse representations of other patches containing

them. Since there is no redundancy in our setting, the adaptation of the above scheme

to our setting may also result in alias artifacts. Furthermore, the proposed numerical

algorithm is very different from the optimization scheme in [80], where they alternate

between a greedy K-SVD dictionary learning algorithm and a reconstruction update

step admitting an efficient closed-form solution. We observe that the greedy approach

is vulnerable to local minima in the dynamic imaging setting.

The proposed BCS setup has some key differences with the formulation in [101],

where the recovery of several signals measured by the same sensing matrix is ad-

dressed; additional constraints on the dictionary were needed to ensure unique re-

construction in this setting. By contrast, we use different sensing matrices (sampling

patterns) for different time frames, inspired by prior work in other dynamic MRI

problems [16, 18, 40]. Our phase transition experiments show that we obtain good

reconstructions without any additional constraints on the dictionary. Since the BCS

scheme assumes that only very few basis functions are active at each voxel, this model

can be thought of as a locally low-rank representation [96]. However, unlike [96], the

BCS scheme does not estimate the basis functions for each neighborhood indepen-

dently. Since it estimates V from all voxels simultaneously, it is capable of exploiting
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the correlations between voxels that are well separated in space (non-local correla-

tions).

4.2 Dynamic MRI reconstruction using the
BCS model

4.2.1 Dynamic image acquisition

The main goal of the chapter is to recover the dynamic dataset γ(x, t) : Z3 → C

from its under-sampled Fourier measurements. We represent the dataset as the M×N

Casorati matrix [74]:

ΓM×N =




γ(x1, t1) . . . . γ(x1, tN)

γ(x2, t1) . . . . γ(x2, tN)

. . . . . .

. . . . . .

γ(xM , t1) . . . . γ(xM , tN)




. (4.1)

Here, M is the number of voxels in the image and N is the number of image frames

in the dataset. The columns of Γ correspond to the voxels of each time frame. We

model the measurement process as

bi = (Si ◦ F ◦ Ti)︸ ︷︷ ︸
Ai

(Γ) + ni; i = 1, ..., N ; (4.2)

where, bi and ni are respectively the measurement and noise vectors at the ith time

instants. Ti is an operator that extracts the ith column of Γ, which corresponds to the

image at ti. F is the 2 dimensional Fourier transform and Si is the sampling operator

that extracts the Fourier samples on the k-space trajectory corresponding to the ith

time frame. We consider different sampling trajectories for different time frames to

improve the diversity.
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4.2.2 The BCS representation

We model Γ as the product of a sparse coefficient matrix UM×R and a matrix

VR×N , which is a dictionary of temporal basis functions:




γ(x1, t1) . . . . γ(x1, tN)

γ(x2, t1) . . . . γ(x2, tN)

. . . . . .

. . . . . .

γ(xM , t1) . . . . γ(xM , tN)




︸ ︷︷ ︸
ΓM×N

=




u1(x1) . . uR(x1)

u1(x2) . . uR(x2)

. . . .

. . . .

u1(xM) . . uR(xM)




︸ ︷︷ ︸
UM×R




v1(t1) . . v1(tN)

v2(t1) . . v2(tN)

. . . .

vR(t1) . . vR(tN)




︸ ︷︷ ︸
VR×N

. (4.3)

Here, R is the total number of basis functions in the dictionary. The model in (4.3)

can also be expressed as the partially separable function (PSF) model [74,94]:

γ(x, t) =
R∑

i=1

ui(x) vi(t), (4.4)

Here, ui(x) corresponds to the ith column of U and is termed as the ith spatial weight.

Similarly, vi(t) corresponds to the ith row of V and is the ith temporal basis func-

tion. The main difference with the traditional PSF setting is that the rows of U are

constrained to be sparse, which imply that there are very few non-zero entries; this

also suggests that few of the temporal basis functions are sufficient to model the tem-

poral profile at any specified voxel. The over-complete dictionary of basis functions
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are estimated from the data itself and are not necessarily orthogonal. In figure 4.1,

we demonstrate the differences between BLM (low-rank) and BCS representations

of a cardiac perfusion MRI data set with motion. Note that the sparsity constraint

encourages the formation of voxel groups that share similar temporal profiles. Since

many more basis functions are present in the dictionary, the representation is richer

than the BLM model. The sparsity assumption ensures that the richness of the

model is not translated to increased degrees of freedom. The sparsity assumption

also enables the suppression of noise and blurring artifacts, thus resulting in sharper

reconstructions.

The degrees of freedom associated with BCS is approximately Mk+RN−1, where

k is the average sparsity of the coefficients and R is the number of basis functions in

the dictionary. Since M >> N , the degrees of freedom in the BCS representation

is dominated by the average sparsity (k) and not the size of the dictionary (R), for

realistic dictionary sizes. Since the overhead in learning the dictionary is low, it is

much better to learn the dictionary from the under-sampled data rather than using

a sub-optimal dictionary. Hence, we expect this scheme to provide superior results

than classical compressive sensing schemes that use fixed dictionaries.

4.2.3 The objective function

We now address the recovery of the signal matrix Γ, assuming the BCS model

specified by (4.3). Similar to classical compressive sensing schemes, we replace the

sparsity constraint by an `1 penalty. We pose the simultaneous estimation of U and

V from the measurements as the constrained optimization problem:

{Û, V̂} = arg min
U,V

[
N∑

i=1

||Ai (UV)− bi||22

]
+ λ‖U‖`1 ;

such that ||V||2F ≤ c.

(4.5)

The first term in the objective function (4.5) ensures data consistency. The second
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term is the sparsity promoting `1 norm on the entries of U defined as the absolute

sum of its matrix entries: U: ‖U‖`1 =
∑M

i=1

∑R
j=1 |u(i, j)|. λ is the regularization

parameter, and c is a constant that is specified apriori. The Frobenius norm constraint

on V is imposed to make the problem well posed; if this constraint is not used, the

optimization scheme can end up with coefficients U that are arbitrarily small in

magnitude. While other constraints (e.g. unit norm constraints on rows) can also

be used to make the problem well-posed, the Frobenius norm constraint along with

the `1 sparsity penalty encourages a ranking of temporal basis functions. Specifically,

important basis functions are assigned larger amplitudes, while un-important basis

functions are allowed to decay to small amplitudes. We observe that the specific

choice of c is not very important; if c is changed, the regularization parameter λ also

has to be changed to yield similar results.

4.2.4 The optimization algorithm

The Lagrangian of the constrained optimization problem in (4.5) is specified by:

L(U,V, η) =

[
N∑

i=1

‖Ai (UV)− bi‖22

]
+ λ‖(U)‖`1+

+η
(
||V||2F − c

)
; η ≥ 0

(4.6)

where η is the Lagrange multiplier.

Since the `1 penalty on the coefficient matrix is a non differentiable function, we

approximate it by the differentiable Huber induced penalty which smooths the l1

penalty.

ϕβ(U) =
M∑

i=1

R∑

j=1

ψβ(ui,j), (4.7)
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Figure 4.2: Comparison of different BCS schemes: In (a), we show the reconstruction error
vs reconstruction time for the proposed BCS, alternate BCS, and the greedy BCS schemes.
The free parameters of all the schemes were optimized to yield the lowest possible errors,
while the dictionary sizes of all methods were fixed to 45 atoms. We plot the reconstruction
error as a function of the CPU run time for the different schemes with different dictionary
initializations. The proposed BCS and alternating BCS scheme converged to the same
solution irrespective of the initialization. However, the proposed scheme is observed to be
considerably faster; note that the alternating scheme takes around ten times more time to
converge. It is also seen that the greedy BCS scheme converged to different solutions with
different initializations, indicating the dependence of these schemes on local minima.

where, ui,j are the entries of U and ψβ(u) is defined as:

ψβ(x) =




|x| − 1/2β if |x| ≥ 1

β

β |x|2 /2 else .
(4.8)

The Lagrangian function obtained by replacing the `1 penalty in (4.6) by ϕβ is:

Dβ(U,V, η) =

[
N∑

i=1

‖Ai (UV)− bi‖22

]
+ λ ϕβ(U)+

+η
(
||V||2F − c

)
; η ≥ 0

(4.9)
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Note that ϕβ(U) is parametrized by the single parameter β. When β → ∞, the

Huber induced norm is equivalent to the original `1 penalty. Other ways to smooth

the `1 norm have been proposed (eg: [102]).

We observe that the algorithm has slow convergence if we solve for (4.5) with

β → ∞. We use a continuation strategy to improve the convergence speed. Note

that the Huber norm simplifies to the Frobenius norm when β = 0. This formulation

(ignoring the constant c and optimization with respect to η) is similar to the one

considered in [54]; according to the [54, Lemma 5], the solution of (4.9) is equivalent to

the minimum nuclear norm solution. Here, we assume that the size of the dictionary

R is greater than the rank of Γ, which holds in most cases of practical interest.

Thus, the problem converges to the well-defined nuclear norm solution when β =

0. Our earlier experiments show that the minimum nuclear norm solution already

provides reasonable estimates with reduced aliasing [18]. Thus, the cost function is

less vulnerable to local minimum when β is small. Hence, we propose a continuation

strategy, where β is initialized to zero and is gradually increased to a large value. By

slowly increasing β from zero, we expect to gradually truncate the small coefficients

of U, while re-learning the dictionary. Our experiments show that this approach

considerably improves the convergence rate and avoids local minima issues.

We rely on the majorize-minimize framework to realize a fast algorithm. We start

by majorizing the Huber norm in (4.9) as 2 [19]:

ϕβ(U) = min
L

β

2
‖U− L‖2F + ‖L‖`1 , (4.10)

where L is an auxiliary variable. Substituting (4.10) in (4.9), we obtain the following

2 Note that the right hand side of (4.10) is only guaranteed to majorize the Huber penalty ϕβ(U);
it does not majorize the `1 norm of U; (as from (4.8) that ψβ(x) is lower than the `1 penalty by
1/2β when |x| > 1/β. Similarly ψβ < |x|/2 when |x| < 1/β). This majorization in (4.10) later
enables us to exploit simple shrinkage strategies that exist for the `1 norm; if the `1 penalty were
used instead of the Huber penalty, it would have resulted in more complex expressions than in (4.16).
For additional details, we refer the interested reader to [19].
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modified Lagrange function, which is a function of four variables U, V, L and η:

D(U,V,L, η) =
N∑

i=1

[
||Ai (UV)− bi||22

]
+ η

(
||V||2F − c

)
+

+λ

[
‖L‖`1 +

β

2
‖U− L‖2F

]
;

(4.11)

The above criterion is dependent on U, V, L, and η and hence have to be solved

for all of these variables. While this formulation may appear more complex than the

original BCS scheme (4.5), this results in a simple algorithm. Specifically, we use an

alternating minimization scheme to solve (4.11). At each step, we solve for a specific

variable, assuming the other variables to be fixed; we systematically cycle through

these subproblems until convergence. The subproblems are specified below.

Ln+1 = arg min
L
‖Un − L‖22 +

2

β
‖L‖`1 ; (4.12)

Un+1 = arg min
U

N∑

i=1

[
‖Ai(UVn)− bi‖22

]
+

+
λβ

2
||U− Ln+1||22 ;

(4.13)

Vn+1 = arg min
V

N∑

i=1

[
‖Ai(Un+1V)− bi‖22

]
+

+ηn
(
‖V‖2F − c

)
;

(4.14)

We use a steepesct ascent rule to update the Lagrange multiplier at each iteration.

ηn+1 =
(
ηn + ‖Vn+1‖2F − c

)
+
, (4.15)
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where ‘+’ represents the operator defined as (τ)+ = max{0, τ}, which is used to

ensure the positivity constraint on η (see (4.9)).

Each of the sub-problems are relatively simple and can be solved efficiently, either

using analytical schemes or simple optimization strategies. Specifically, (4.12) can be

solved analytically as:

Ln+1 =
Un

|Un|

(
|Un| −

1

β

)

+

; (4.16)

Since the problems in (4.13) and (4.14) are quadratic, we solve it using conjugate

gradient (CG) algorithms.

Once ‖V‖2F ≈ c, we see that η stabilizes. Hence, we expect (4.14) to converge

quickly. In contrast, the condition number of the U sub-problem is dependent on

β. Hence, the convergence of the algorithm will be slow at high values of β. In

addition, the algorithm may converge to a local minimum if it is initialized directly

with a large value of β. We use the above mentioned continuation approach to solve

for simpler problems initially and progressively increase the complexity. Specifically,

starting with an initialization of V, the algorithm iterates between (4.12) and (4.15)

in an inner loop, while progressively updating β starting with a small value in an

outer loop. The inner loop is terminated when the cost in (4.6) stagnates. The outer

loop is terminated when a large enough β is achieved. We define convergence as when

the cost in (4.6) in the outer loop stagnates to a threshold of 10−5. In general, with

our experiments on dynamic MRI data, we observed convergence when the final value

of β is approximately 1013 to 1015 times larger than the initial value of β.

4.3 Experimental Evaluation

We describe in sections (III. A-B) the algorithmic considerations of the proposed

blind CS framework. We then perform phase transition experiments using numerical

phantoms to empirically demonstrate the uniqueness of the blind CS framework (sec-

tion III.C). We finally compare the reconstructions of blind CS against existing low
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rank and compressed sensing schemes using invivo Cartesian and radial free breathing

myocardial perfusion MRI datasets (section III.D).

4.3.1 Comparison of different BCS schemes

In this section, we compare the performance of the proposed scheme with two other

potential BCS implementations. Specifically, we focus on the rate of convergence and

the sensitivity to initial guesses of the following schemes:

• Proposed BCS: The proposed BCS formulation specified by (4.5) solved by opti-

mizing U and V using the proposed majorize-minimize algorithm; the algorithm

cycles through steps specified by (4.12)-(4.15).

• Alternating BCS: The proposed BCS formulation specified by (4.5) solved by al-

ternatively optimizing for the sparse coefficients U and the dictionary V. Specif-

ically, the sparse coding step (solving for U, assuming a fixed V) is performed

using the state of the art augmented Lagrangian optimization algorithm [103].

The dictionary learning sub-problem solves for V, assuming U to be fixed. This

is solved by iterating between a quadratic subproblem in V (solved by a con-

jugate gradient algorithm), and a steepest ascent update rule for η (similar to

(4.15)). The update of η ensures the Frobenius norm constraint on V is satis-

fied at the end of the V sub-problem. Both of the sparse coding and dictionary

learning steps are iterated until convergence.

• Greedy BCS: We adapt the extension of the K-SVD scheme that was used for

patch based 2D image recovery [80] to our setting of dynamic imaging. This

scheme models the rows of Γ in the synthesis dictionary with temporal basis

functions (as in (4.4)). Specifically, it solves the following optimization problem:

{Γ̂, Û, V̂} = arg min
Γ,U,V

‖Γ−UV‖22; such that
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N∑

i=1

‖Ai(Γ)− bi‖22 < σn,

‖uk‖0 ≤ j; k = 1, . . . ,M,

‖vq‖22 = 1; q = 1, . . . , R; (4.17)

where σn is the standard deviation of the measurement noise. Here the `0 norm

is used to impose the sparsity constraints on the rows (indexed by k) of U.

The number of nonzero coefficients (or the sparsity level) of each row of U is

given by j. The unit column norm constraints are used on the elements of the

dictionary to ensure well posedness (avoid scaling ambiguity). Starting with

an initial estimate of the image data given by the zero filled inverse Fourier

reconstruction Γinit, the BCS scheme in this setting iterates between a denois-

ing/dealiasing step to update U,V, and an image reconstruction step to update

Γ. The denoising step involves dictionary learning and sparse coding with `0

minimization. It utilizes the K-SVD algorithm [99] which takes a greedy ap-

proach to update U and V. We implemented the K-SVD algorithm based on

the codes available at the authors webpage [99]. The K-SVD implementation

available online was modified to produce complex dictionaries. For sparse cod-

ing, we used the orthogonal matching pursuit algorithm (OMP). We used the

approximation error threshold along with the sparsity threshold (upper bound

on j) in OMP. The approximation error threshold was set to 10−6. Our imple-

mentation also considered the pruning step described in [99, 100] to minimize

local minima effects. Specifically, if similar basis functions were learnt, one of

them was replaced with the voxel time profile that was least represented. In

addition, if a basis function was not being used enough, it was replaced with the

voxel time profile that was least represented. Other empirical heuristics such

as varying the approximation error threshold in the OMP algorithm during the

different iteration (alteration) steps may also be considered in the greedy BCS
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scheme. In this work, we restrict ourselves to a fixed error threshold of 10−6 due

to the difficulty of tuning for an optimal set of different error threshold values

for different alteration steps.

In Fig. 4.2, we aim to recover a myocardial perfusion MRI dataset with consid-

erable interframe motion (Nx × Ny × Nt = 190 × 90 × 70) from its undersampled

k − t measurements using the above three BCS schemes. We considered a noiseless

simulation in this experiment for all the three BCS schemes. While resampling, we

used a radial trajectory with 12 uniformly spaced rays within a frame with subse-

quent random rotations across frames to achieve incoherency. This corresponded to

an acceleration of 7.5 fold. We used 45 basis functions in the dictionary. We compare

the performance of the different BCS algorithms with different initializations of the

dictionary V. Specifically, we used dictionaries with random entries, and a dictio-

nary with the discrete cosine transform (DCT) bases. To ensure fair comparisons, we

optimized the parameters of all the three schemes: (i.e, regularization parameter λ

in the proposed and alternating BCS schemes, as well as the sparsity level j in the

greedy BCS scheme). These were chosen such that the normalized error between the

reconstruction and the fully sampled data was minimal. A sparsity level of j = 3 was

found to be optimal for the greedy BCS scheme. Further, in the greedy BCS scheme,

after the first iteration, we initialized the K-SVD algorithm with the dictionary ob-

tained from the previous iteration. We used the same stopping criterion in both the

proposed and alternate BCS schemes: the iterations were terminated when the cost

in (4.6) stagnated to a threshold of 10−5. All the algorithms were run on a linux work

station with a 4 core Intel Xeon processor and 24 GB RAM.

From Fig. 4.2, we observe both the proposed and alternate BCS schemes to be

robust to the choice of initial guess of the dictionary. They converged to almost the

same solution with different initial guesses. However, the proposed BCS scheme con-

verged to the solution significantly faster (atleast by a factor of 10 fold) compared
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Figure 4.4: Blind CS model dependence on the regularization parameter and the dictionary
size: (a) shows the reconstruction error (ζ) as a function of different λ in the BCS model. (b)
and (c) respectively show the reconstruction error (ζ) and the average number of non zero
model coefficients of the BCS and the BLM schemes as a function of the number of bases in
the respective models. As depicted in (a), we optimize our choice of λ such that the error
between the fully sampled data and the reconstruction is minimal. From (b), we observe
that the BCS reconstruction error reduces with the dictionary size and hits a plateau after
a size of 20 basis functions. This is in sharp contrast with the BLM scheme where the
reconstructions errors increase when the basis functions are increased. The average number
of BCS model coefficients unlike the BLM has a non-linear relation with the dictionary size
reaching saturation to a number of 4-4.5. The plots in (b) and (c) depict that the BCS
scheme is insensitive to dictionary size as long as a reasonable size (atleast 20 in this case) is
chosen. We chose a dictionary size of 45 bases in the experiments considered in this chapter.

to the alternate BCS scheme. From Fig. 4.2, we observe the number of itera-

tions for both the proposed and the alternate BCS schemes to be similar. However,

since the alternate BCS scheme solves for the sparse `1 minimization problem fully
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Γ1 Γ2 Γ3 Γ10

Figure 4.5: The numerical phantoms Γj , which are used in the simulation study in figure
4.6. Here j is the number of non zero coefficients (sparsity levels) at each pixel. The top
and bottom rows respectively show one spatial frame and the image time profile through
the dotted white line. Note that the sparse decomposition provides considerable temporal
detail even for a sparsity of one. This is possible since different temporal basis functions
are active at each pixel.

during each iteration, it is more expensive than the proposed BCS scheme. On an

average, an iteration of the alternate BCS scheme was ≈ 10 slower than an iteration

of the proposed BCS scheme. From Fig. 4.2, we note the greedy BCS scheme to

converge to different solutions for different initial guesses. Additionally, as noted in

Fig. 4.2 c.d, the reconstructions with the proposed BCS scheme were better than

the reconstructions with the greedy BCS scheme. Although the temporal dynamics

were faithfully captured in the greedy BCS reconstructions, it suffered from noisy

artifacts. This was due to modeling with noisy basis functions, which were learned by

the algorithm from under sampled data (see Fig. 3). Note that this scheme uses the

unit column norm constraints which has all the basis functions are ranked equally. In

contrast, since the proposed scheme uses the `1 sparsity penalty and the Frobenius

norm dictionary constraint, the energy of the learned bases functions varied consid-

erably (see Fig. 4.3). With the proposed scheme, the `1 minimization optimization
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(e) Dictionary unaware:
Blind CS
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(f) Dictionary aware

Figure 4.6: Phase transition behavior of various reconstruction schemes: Top row:
Normalized reconstruction error ζ is shown at different acceleration factors (or equiv-
alently different number of radial rays in each frame) for different values of j. Bottom
row: ζ thresholded at 1 percent error; black represents 100 percent recovery. We study
the ability of the algorithms to reliably recover each of the data sets Γj from different
number of radial samples in kspace. The Γj, shown in Fig. 4.5 are the j sparse ap-
proximations of a myocardial perfusion MRI dataset with motion. As expected, the
number of lines required to recover the dataset increases with the sparsity. The blind
CS scheme outperformed the compressed sensing scheme considerably. The learned
dictionary aware scheme yielded the best recovery rates. However due to a small over
head in estimating the dictionary, the dictionary unaware (blind CS) scheme was only
marginally worse than the dictionary aware scheme.

ensures that the important basis functions (basis functions that are shared by several

voxels) will have a higher energy. Similarly, the un-important noise-like basis func-

tions that play active roles in fewer voxels will be attenuated, since the corresponding

increase in ‖U‖`1 is small. Thus, the `1 penalty-Frobenius norm combination results
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in a model order selection, which is more desirable than the `0 penalty-column norm

combination. This choice is especially beneficial in the undersampled case since the

number of basis functions that can be reliably recovered is dependent on the number

of measurements and the signal to noise ratio.

4.3.2 Choice of parameters

The performance of the blind CS scheme depends on the choice of two parameters:

regularization parameter λ and the number of bases in the dictionary R. Eventhough

the criterion in (4.5) depends on c, varying it results in a renormalization of the

dictionary elements and hence changing the value of λ. We set the value of c as 800

for both the numerical and invivo experiments. We now discuss the behavior of the

blind CS model with respect to changes in λ and R.

4.3.2.1 Dependence on λ

We observe that if a low λ is used, the model coefficient matrix U is less sparse.

This results in representing each voxel profile using many temporal basis functions.

Since the number of degrees of freedom on the scheme depends on the number of

sparse coefficients, this approach often results in residual aliasing in datasets with

large motion. In contrast, heavy regularization results in modeling the entire dynamic

variations in the dataset using very few temporal basis functions; this often results in

temporal blurring and loss of temporal detail. In the experiments in this chapter, we

have access to the fully sampled ground truth data. As depicted in figure 4.4 (a), we

choose the optimal λ such that the error between the reconstructions and the fully

sampled ground truth data, specified by

ζ =

(‖Γrecon − Γorig‖2F
‖Γorig‖2F

)
. (4.18)
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is minimized. Furthermore, in invivo experiments with myocardial perfusion MRI

datasets, we optimize λ by evaluating the reconstruction error only in a field of view

that contained regions of the heart (ζROI, ROI: region of interest), specified by

ζROI =

(‖Γrecon,ROI − Γorig,ROI‖2F
‖Γorig,ROI‖2F

)
. (4.19)

This metric is motivated by recent findings in [79], and by our own experience in

determining a quantitative metric that best describes the accuracy in reproducing

the perfusion dynamics in different regions of the heart, and the visual quality in

terms of minimizing visual artifacts, and preserving crispness of borders of heart.

We realize that the above approach of choosing the regularization parameter is

not feasible in practical applications, where the fully sampled reference data is not

available. In these cases, one can rely on simply heuristics such as the L-curve strategy

[104], or more sophisticated approaches for choosing the regularization parameters

[105].

4.3.2.2 Dependence on the dictionary size

In figure 4.4.b & 4.4.c, we study the behavior of the BCS model as the number of

basis functions in the model increase. We perform BCS reconstructions using dictio-

nary sizes ranging from 5 to 100 temporal bases. The plot the reconstruction errors

and the average number of non-zero model coefficients 3 as a function of the number

of basis functions are shown in figures 4.4.b & 4.4.c, respectively. We observe that the

BCS reconstructions are insensitive to the dictionary size beyond 20-25 basis func-

tions. We attribute the insensitivity to number of basis functions to the combination

of the `1 sparsity norm and the Frobenius norm constraint on the dictionary (see Fig.

4.3). Note that the number of basis functions that can be reliably estimated from

under sampled data is limited by the number of measurements and the signal to noise

3Evaluated by performing the average of the number of non-zero coefficients in the rows of the
matrix UM×R that was thresholded at 1 percent of the maximum value of U.
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ratio, unlike the classical dictionary learning setting where extensive training data is

available. As discussed earlier (section III.A), the `1 sparsity norm and the Frobenius

norm dictionary constraint allows the energy of the basis functions to be considerably

different. Hence, the optimization scheme ranks the basis functions in terms of their

energy, allowing the insignificant basis functions (which models the alias artifacts and

noise) to decay to very small amplitudes. Based on these above observations, we fix

the BCS dictionary size to 45 basis functions in the rest of the chapter. Note that

since 45 < 70 = the number of time frames of the data, this is an undercomplete

representation. From figure 4.4 (c), we observe that the average number of non zero

model coefficients to be approximately constant (≈ 4−4.5) for dictionary sizes greater

than 20 bases. The BCS model is also compared to the blind linear model (low-rank

representation) in figures 4.4 (b & c) . The number of non zero model coefficients in

the blind linear model grows linearly with the number of bases. This implies that the

temporal bases modeling error artifacts and noise are also learned as the number of

basis functions increase. This explains the higher reconstruction errors observed with

the blind linear models as the number of basis functions increase beyond a limit.

4.3.3 Numerical simulations

To study the uniqueness of the proposed BCS formulation in (4.5), we evaluate

the phase transition behavior of the algorithm on numerical phantoms. We generate

dynamic phantoms with varying sparsity levels by performing dictionary learning on

a fully sampled myocardial perfusion MRI dataset with motion (Nx×Ny×Nt = 190×

90× 70); i.e., M = 17100;N = 70. We use the K-SVD algorithm [99] to approximate

the fully sampled Casorati matrix ΓM×N as a product of a sparse coefficient matrix

Uj
M×R, and a learned dictionary Vj

R×N by solving

{Ûj, V̂j} = arg min
Uj ,Vj

‖Γ−UjVj‖2F
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s.t. ‖ui‖0 ≤ j; i = 1, 2, ..,M,

‖vq‖2 = 1; q = 1, ..., R; (4.20)

Here, j denotes the number of non zero coefficients in each row of Uj. We set

the size of the dictionary as R = 45. We construct different dynamic phantoms

corresponding to different values of j ranging from (j = 1, 2, ..10) as Γj = UjVj. Few

of these phantoms are shown in figure 4.5. Note that the K-SVD model is somewhat

inconsistent with our formulation since it relies on `0 penalty and uses the unit column

norm constraint, compared to the `1 penalty and Frobenius norm constraint on the

dictionary in our setting.

We perform experiments to reconstruct the spatio-temporal datasets Γj from k−t

measurements that are undersampled at different acceleration factors. Specifically,

we employ a radial sampling trajectory with ‘l’ number of uniformly spaced rays

within a frame with subsequent random rotations across time frames; the random

rotations ensure incoherent sampling. We consider different number of radial rays

ranging from l = 4, 8, 12, .., 56 to simulate undersampling at different acceleration

rates. The reconstructions were performed with three different schemes:

1. classical compressed sensing method, where the signal is assumed to be sparse

in the temporal Fourier domain (CS) [40].

2. the proposed blind CS method, where the sparse coefficients and the dictionary

are estimated from the measurements.

3. dictionary aware CS: this approach is similar to 1, except that the dictionary Vj

is assumed to be known. This case is included as an upper-limit for acheivable

acceleration.

The performance of the above schemes were compared by evaluating the normalized
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reconstruction error metric ζ (4.18). All the above reconstruction schemes were opti-

mized for their best performance by tuning the regularization parameters such that

ζ was minimal.

The phase transition plots of the reconstruction schemes are shown in figure 4.6.

We observe that the CS scheme using Fourier dictionary result in poor recovery

rates in comparison to the other schemes. This is expected since the myocardial

perfusion data is not sparse in the Fourier basis. As expected, the dictionary aware

case (the exact dictionary in which the signal is sparse is pre-specified) provides

the best results. However, we observe that the performance of the BCS scheme

is only marginally worse than the dictionary aware scheme. As explained before,

most of the degrees of freedom in the BCS representation is associated with the

sparse coefficients. By contrast, the number of free parameters associated with the

dictionary is comparatively far smaller since the number of voxels is far greater than

the number of time frames. This clearly shows that the overhead in additionally

estimating the dictionary is minimal in the dynamic imaging scenario. This property

makes the proposed scheme readily applicable and very useful in dynamic imaging

applications (e.g. myocardial perfusion, free breathing cine), where the signal is not

sparse in pre-specified dictionaries.

4.3.4 Experiments on invivo datasets

4.3.4.1 Data acquisition and undersampling

We evaluate the performance of the BCS scheme by performing retrospective

undersampling experiments on contrast enhanced dynamic MRI data. We consider

one brain perfusion MRI dataset acquired using Cartesian sampling, and two free

breathing myocardial perfusion MRI datasets that were acquired using Cartesian

sampling, and radial sampling respectively.

The myocardial perfusion MRI datasets were obtained from subjects scanned on

a Siemens 3T MRI at the University of Utah in accordance to the institute’s review
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board. The Cartesian dataset was acquired under rest conditions after a Gd bolus of

0.02 mmol/kg. The radial dataset was acquired under stress conditions where 0.03

mmol/kg of Gd contrast agent was injected after 3 minutes of adenosine infusion.

The Cartesian dataset (phase × frequency encodes × time = 90 × 190 × 70) was

acquired using a saturation recovery FLASH sequence (3 slices, TR/TE =2.5/1.5 ms,

sat. recovery time = 100 ms). The motion in the data was due to improper gating

and/or breathing; (see the ripples in the time profile in figure 4.7(c)). The radial data

was acquired with a perfusion radial FLASH saturation recovery sequence (TR/TE

2.5/1.3 ms ). 72 radial rays equally spaced over π radians and with 256 samples per

ray were acquired for a given time frame. The rays in successive frames were rotated

by a uniform angle of π/288 radians, which corresponds to a period of 4 across time.

The acquired radial data corresponds to an acceleration factor of ≈ 3 compared to

Nyquist. Since this dataset is slightly under sampled, we use a spatio-temporal total

variation (TV) constrained reconstruction algorithm to generate the reference data

in this case. We observe that this approach is capable of resolving the slight residual

aliasing in the acquired data.

The single slice brain perfusion MRI dataset was obtained from a multi slice 2D

dynamic contrast enhanced (DCE) patient scan at the University of Rochester. The

patient had regions of tumor identified in the DCE study. The data corresponded to

60 time frames separated by TR=2sec; the matrix size was 128× 128× 60.

Retrospective downsampling experiments were done using two different sampling

schemes respectively for the Cartesian and radial acquisitions. Specifically, the Carte-

sian datasets were resampled using a radial trajectory with 12 uniformly spaced rays

within a frame with subsequent random rotations across frames to achieve inco-

herency. This corresponds to a net acceleration level of 7.5 in the cardiac data,

and 10.66 in the brain data. Retrospective undersampling of the cardiac radial data

was done by considering 24 rays from the acquired 72 ray dataset. These rays were
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Figure 4.7: Comparison of the proposed scheme with different methods on a retrospectively
downsampled Cartesian myocardial perfusion data set with motion at 7.5 fold acceleration:
A radial trajectory is used for downsampling. The trajectory for one frame is shown in
(i). The trajectory is rotated by random shifts in each time frame. Reconstructions using
different algorithms, along with the fully sampled data are shown in (i) to (v). (a-b), (c), (d-
e), (f) respectively show few spatial frames, image time profile, corresponding error images,
error in image time profile. The image time profile in (c) is through the dotted line in (i.b).
The ripples in (i.c) correspond to the motion due to inconsistent gating and/or breathing.
The location of the spatial frames along time is marked by the dotted lines in (i.c). We
observe the BCS scheme to be robust to spatio-temporal blurring, compared to the low
rank model; eg: see the white arrows, where the details of the papillary muscles are blurred
in the Schatten p-norm reconstruction while maintained well with BCS. This is depicted
in the error images as well, where BCS has diffused errors, while the low rank scheme (iii)
have structured errors corresponding to the anatomy of the heart. The BCS scheme was
also robust to the compromises observed with the CS scheme ; the latter was sensitive to
breathing motion as depicted by the arrows in iv.
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(a) fully sampled (b) Low rank

(c) CS- Fourier sparsity (d) BCS

ζ = 0.0036

ζ = 0.0035 ζ = 0.0018

 Sampling for one frame Error images (x10 scaled)a spatial frame image time series

HFEN = 0.153 HFEN = 0.0935

HFEN = 0.1457

Figure 4.8: Comparisons of the different reconstructions schemes on a brain perfusion MRI
dataset. The fully sampled data in (a) is retrospectively undersampled at a high acceleration
of 10.66. The radial sampling mask for one frame is shown in (a), subsequent frames had
the mask rotated by random angles. We show a spatial frame, the image time series, and
the corresponding error images for all the reconstruction schemes. Note from (b,c), the low
rank and CS schemes have artifacts in the form of spatiotemporal blur; the various fine
features are blurred (see arrows). In contrast, the BCS scheme had crisper features, and
superior spatiotemporal fidelity. The reconstruction error and the HFEN error numbers
were also considerably less with the BCS scheme.

chosen such that they were approximately separated by the golden angle distance

(π/1.818). The golden angle distribution ensured incoherent k-t sampling. The ac-

quisition using 24 rays corresponds to an acceleration of ≈ 10.6 fold when compared

to Nyquist. This acceleration can be capitalized to improve many factors in the scan

(eg: increase the number of slices, improve the spatial resolution, improve quality in

short duration scans such as systolic or ungated imaging).

4.3.4.2 Evaluation of blind CS against other reconstruction schemes

We compare the BCS algorithm against the following schemes:

• low rank promoting reconstruction using Schatten p-norm (Sp-N) (p = 0.1)

minimization [18].

• compressed sensing (CS) exploiting temporal Fourier sparsity [40]
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Figure 4.9: Comparisons of different reconstruction schemes on a stress myocardial perfu-
sion MRI dataset with breathing motion: Retrospective sampling was considered by picking
24 radial rays/frame from the acquired 72 ray data; the rays closest to the golden ratio pat-
tern was chosen. Few spatial frames, the corresponding image time profile, error frames,
and error in image time profile are shown for all the schemes. We specifically observe loss
of important borders and temporal blur with the low rank and CS schemes while the blind
CS reconstructions have crisper borders and better temporal fidelity. Also note from the
columns d,e,f that the errors in the BCS scheme are less concentrated at the edges, com-
pared to the other methods. This indicates that the edge details and temporal dynamics
are better preserved in the BCS reconstructions.
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We compared different low-rank methods including two step low rank reconstruction

[74], nuclear norm minimization [18], incremented rank power factorization (IRPF)

[106], and observed that the Schatten p-norm minimization scheme provides compara-

ble, or even better, results in most cases that we considered [29]. Hence we chose the

Schatten p-norm reconstruction scheme in our comparisons. For a quantitative com-

parison amongst all the methods, we use the normalized reconstruction error metrics

defined in (4.18, 4.19) and the high frequency normalized error norm metric (HFEN).

The HFEN metric was used in [80] to quantify the quality of fine features, and the

edges in the images, and is defined as:

HFEN =
1

N

N∑

i=1

‖LoG(Γrecon,i)− LoG(Γideal,i)‖2F
‖LoG(Γideal,i)‖2F

(4.21)

where LoG is a Laplacian of Gaussian filter that capture edges. We use the same

filter specifications as in [80]: kernel size of 15× 15 pixels, with a standard deviation

of 1.5 pixels.

The comparisons on the Cartesian rest myocardial perfusion MRI dataset are

shown in figure 4.7. We observe that the frames with significant motion content and

contrast variations are considerably blurred with the low rank method. By contrast,

the BCS scheme robustly recovers these regions with minimum spatio-temporal blur.

The BCS scheme is more robust than the CS scheme. Specifically the former is robust

to breathing motion, while the CS scheme results in motion blur (see arrows in figure

4.7 iv.e and iv.f).

Figure 4.8 shows the comparisons on the brain perfusion MRI dataset. We observe

BCS to retain the subtle details and edges of the various structures in the brain. It

shows superior spatio-temporal fidelity. In contrast, the CS and low rank schemes

suffer from spatiotemporal blurring artifacts as depicted in Fig. 4.8.
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In figure 4.9, we compare the various reconstruction schemes on the radial data

acquired during stress conditions. We observe performance similar to figure 4.7.

The low rank reconstructions exhibit reduced temporal fidelity. The reduced fidelity

can result in inaccurate characterization of the contrast dynamics uptake. The CS

reconstructions have considerable spatio-temporal blur. In particular, the borders of

the heart and the papillary muscles are blurred with the CS scheme. By contrast, the

blind CS scheme provides crisper images and are robust to spatio-temporal blur.

4.4 Towards high spatio-temporal resolution
3D DMRI of lung using Blind CS

In this section, we take a slight detour from MR-MPI, and evaluate the feasibilities

of the novel blind CS scheme proposed in this chapter to enable improved dynamic

MRI of the lung.

4.4.1 Preliminaries on 3D dynamic lung MRI

3-D dynamic MRI of the lung is a promising tool to assess lung function and

mechanics. Compared to multi-slice 2D-DMRI, 3-D acquisitions enables the accurate

estimation of lung volumes and its variations. It has recently been shown that the

vital capacities estimated from 3D acquisitions are more correlated with spiromet-

ric measurements compared to 2D-DMRI [107]. However, its full potential is not

clinically realized due to restricted spatio-temporal resolutions and volume coverage.

To obtain whole lung coverage, a 3D FLASH scheme with Cartesian undersampling,

view-sharing and parallel imaging was realized in [107] to achieve an isotropic reso-

lution of 3.75 mm3 with 1 sec time resolution. However the reconstruction scheme

was designed to image the dynamics of the lung during very slow, and controlled

breathing conditions. In this section, we evaluate the feasibility of BCS in improving

the tradeoffs in 3D dynamic MRI of lung. Since the bases functions in BCS are learnt

from the data at hand, they are more representative of the temporal variations within
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the data, and are expected to provide sparser representations than compressed sens-

ing (CS) schemes that utilize predetermined bases. In addition, it does not require

any assumptions on the breathing conditions. Additionally, we propose to combine

BCS with parallel imaging and golden angle (GA) radial sampling; the combination

offers superior incoherence properties

4.4.2 Retrospective undersampling of a 2D acquisition

: To test the feasibility of the BCS scheme in accelerating typical DMRI lung

data, we performed retrospective undersampling experiments on a 2D free breathing

dataset. Data from one coronal slice was acquired on an anesthetized swine using a

TrueFISP sequence (TR/TE = 138.62 /TE = 1.06 msec, phase encodes: 128, Image

matrix size after interpolation: 256x256, FOV 320 mm2, GRAPPA factor: 3) on a 3

T Siemens Trio with the body matrix coil array. The 28 second acquisition resulted in

200 2D images with a temporal footprint of 7images/sec. The reconstructed images

were retrospectively undersampled using a golden angle radial k-t sampling pattern.

Subsampling was performed by considering 40 to 10 spokes/frame. Image reconstruc-

tions with BCS, CS using Fourier bases, low rank (nuclear norm regularized), and

view sharing were performed and compared.

4.4.3 Prospective 3D undersampling with stack of
spokes GA radial acquisition

: A radial FLASH sequence with a 3D stack of spokes trajectory was used to image

a healthy volunteer on a Siemens 3T Trio scanner with the body coil and spine coil ar-

rays enabled. The sequence performs a radial readout in the read/phase (kx-ky) plane

combined with a conventional 3D encoding step along the kz partition. The spacing

between the spokes in each kx-ky plane is determined by golden angle of 111.25 de-

grees. 1000 radial spokes in each partition were continuously acquired for a total of 45

secs during normal breathing with (16 coronal partitions, TR/TE = 2.84ms/1.24ms,
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FOV: 380mmx380mm, Base matrix size: 160x160, 2.37x2.37x4mm3). The data was

binned at a time resolution of 0.72 seconds by considering 16 spokes/frame resulting

in total of 62 frames. This corresponded to an acceleration of R = 10 fold, defined

as (R = Base matrix size./spokes). The BCS reconstruction was performed slice by

slice after performing an inverse Fourier Transform along the kz dimension.

4.4.4 Results and discussion on dynamic lung MRI

From figure 4.10, we observe that the BCS scheme provided superior reconstruc-

tions compared to all the other methods. The view sharing method resulted in severe

temporal blurring and artifacts due to normal breathing conditions. The CS scheme

was found to be sensitive to motion artifacts, while the low rank reconstructions suf-

fered from spatio-temporal blurring. The superior performance of BCS is attributed to

the learned basis functions which capture underlying temporal dynamics (see example

bases in fig.4.10). Feasible acceleration levels of upto 10 fold, (25 spokes/frame) where

the mean square error was within 0.1 percent was achieved with the BCS scheme. In

figure 4.11, we show every fourth slice from the 16 slice reconstructed dataset. The

BCS reconstructions depicted adequate image quality in all the dynamic frames with

minimal artifacts. The intensity variations of a pixel on the diaphragm depict the

dynamics during breathing.

In this section, we showed preliminary feasibilities that BCS scheme utilizing

learned dictionaries could significantly accelerate 3D dynamic lung MRI. During nor-

mal breathing with a 10 fold acceleration factor, spatial resolutions and time reso-

lutions of upto (2.37mm2, 0.72 sec) were achieved with a reasonable slice coverage

(16 slices, 4 mm thickness). Further acceleration factors could be achieved by ex-

ploiting redundancies along the kz dimension, and undersampling the kz dimension.

Future work includes systematic analysis under different breathing conditions (nor-

mal/deep/shallow) with comparisons against spirometry. Further analysis on multiple

patient datasets with image quality evaluation using clinical scoring are required to
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fully evaluate the reconstructions.

4.5 Discussion on Blind compressed sensing

In this chapter, we proposed a novel blind compressive sensing framework for

accelerating dynamic MRI. Since the dictionary is learned from the measurements,

we observe superior reconstructions compared to compressive sensing schemes that

assume fixed dictionaries. Our numerical simulations and phase transition plots show

that the overhead in additionally estimating the dictionary is only marginally higher

than the case with known dictionary. This observation is valid in the dynamic imaging

context since the number of non-zero coefficients (dependent on the number of pixels)

is much higher than the size of the dictionary (dependent on the number of time

frames).

We have also drawn similarities and important distinctions between the BCS

scheme and blind linear models or low-rank methods. Our experiments show superior

performance of the BCS scheme in comparison to the blind linear model. Specifi-

cally, better temporal fidelity, reduced spatial artifacts, sharper spatial features were

distinctly observed with BCS when compared to blind linear model. These improve-

ments can be attributed to the richness of the model in having an overcomplete set

of learned temporal bases.

The proposed setting is fundamentally different from approaches that use dic-

tionaries learnt from exemplar data and use them to recover similar images. The

proposed setting learns the dictionaries jointly with the reconstruction directly from

undersampled data. We observe the learnt temporal basis functions to be heav-

ily dependent on respiration patterns, cardiac rate, timing of the bolus, gadolinium

dosage, adenosine dosage, and the arterial input function (see from Fig. 3). Since

these patterns would vary from subject to subject, the dictionaries learnt from the

data at hand would be more beneficial in capturing subject specific patterns than

dictionaries learnt from a data base of images.
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The comparison of the proposed algorithm against an alternating scheme to min-

imize the same cost function, where the state of the art sparse coding scheme is

alternated with dictionary learning, demonstrates the computational efficiency of the

proposed optimization strategy. In addition, the proposed scheme is also seen to

be fast and more robust to local minima than the extensions to the greedy K-SVD

dictionary learning scheme. More importantly, the ability of the proposed scheme

to accommodate Frobenius norm priors is seen to be advantageous in the context

of dictionary learning from under sampled data; the number of basis functions that

can be reliably learned is limited by the available measurements and signal to noise

ratio in this setting. Specifically, this Frobenius norm constraint along with the `1

sparsity norm results in an implicit model order selection, where the insignificant

basis functions are attenuated. We observe that the continuation approach in the

majorize-minimize algorithm to be crucial in providing fast convergence. We plan

to investigate solving the BCS problem with the augmented Lagrangian approach as

proposed in [75,108] to further improve the algorithm.

The quality of the BCS reconstructions depends on the sparsity regularization

parameter λ. In general, in our experiments, the optimal value of λ (based on the

metrics in (4.18) and (4.19)) did not vary much across datasets acquired with the

same protocol (eg: rest cardiac perfusion MRI, shallow breathing datasets). So , in a

practical setting, one could use the same λ tuned for one dataset (based on ground

truth data) to recover other datasets from undersampled data that are acquired with

the same protocol.

The proposed scheme can be extended in several possible directions. For example,

the BCS signal representation can be further constrained by imposing the sparsity

of U in a fixed transform domain (e.g. wavelet, total variation domain) to further

reduce the degrees of freedom. Since such priors are complementary to the redun-

dancy between the intensity profiles of the voxels exploited by BCS, their use can
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provide additional gains. This approach is similar in philosophy to [18], where we

demonstrated the utility in combining low-rank models with smoothness priors. The

adaptation of [109], where the authors used dictionaries with three-dimensional atoms,

may be better than the 1-D dictionaries used in this work. Similarly, the use of mo-

tion compensation within the reconstruction scheme as in [32, 110] can also improve

the results. The algorithm was observed to provide good performance with radial

sampling trajectories. However, more work is required to evaluate the performance

of the algorithm with different sampling trajectories.
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CHAPTER 5
A NOVEL FRAMEWORK FOR MOTION COMPENSATED

COMPRESSED SENSING MYOCARDIAL PERFUSION MRI

5.1 Introduction

In this chapter, we develop a novel method that improves the performance of

existing compressed sensing (CS) schemes in the presence of motion. In the context

of myocardial perfusion MRI, CS recovery based on exploiting sparse representations

in transform domains such as temporal Fourier domain [16], temporal total vari-

ation [17], and temporal PCA domains [39] have been proposed. These methods

demonstrated successful recovery when the inter-frame motion is minimal. A chal-

lenge with these methods is the sensitivity to large inter-frame motion. The motion

decreases the sparsity of the representation as a result of which the reconstructions

suffer from severe temporal blurring and motion related artifacts at high acceleration

factors.

To overcome the challenges associated with motion artifacts, recently researchers

have proposed schemes to estimate the motion and compensate for it during the re-

construction. Pederson et. al proposed to unify the reconstruction of the images

and the motion compensation into a single algorithm [111]. They represented the

contrast variations using a parametric perfusion model, while motion was modeled

as a modulation of a 2-D displacement field, which is estimated from two images

acquired at end inspiration and end expiration. The fewer degrees of freedom in this

model may be restrictive in practical perfusion imaging applications. Jung et. al,

have extended their k− t FOCUSS scheme with motion estimation and compensation

for cardiac cine MRI [110]. This scheme approximate the dynamic images as the

deformation of fully sampled reference frames, collected before and after the dynamic

acquisition. The residuals are then reconstructed from under-sampled k-space data

using k− t FOCUSS. Unlike cine MRI, the contrast of the dynamic images are signif-

icantly different from the reference images. Hence, the subtraction of the deformed
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reference image may not generate sparse residuals. Moreover, more complex mutual

information similarity measures may be needed for the registration. Similar to [110],

Usman et.al in [112] developed a motion estimation scheme customized for cardiac

cine imaging. Otazo et al. in [113] partially corrected for the motion in myocardial

perfusion MRI using a rigid deformation model, where all the frames from a prelim-

inary CS reconstruction were mapped to a single fully sampled reference image to

estimate the motion. However, registering image frames to a single reference image

may be suboptimal as image contrast varies significantly across time- frames [114].

Fessler recently introduced an elegant energy minimization framework to reconstruct

a static image of a moving organ from its measurements [115]. The formulation of

the problem as a unified energy minimization scheme enables the appreciation of the

tradeoffs in the modeling. However, this scheme is not designed to recover image time

series with dynamic contrast variations.

In this chapter, we propose a novel framework to jointly estimate motion and dy-

namic images from undersampled data. We model the motion as an elastic deforma-

tion, whose parameters are also estimated from the data. We assume the myocardial

perfusion dynamics to be sparse in transform domains, once the motion is removed.

This model is considerably less constrained than the parametric scheme used in [111].

We introduce an efficient variable splitting framework with continuation to decouple

the problem into simpler sub-problems. The novelties enabled by this optimization

are (a) a generalized formulation capable of handling any temporal sparsifying trans-

form (such as temporal Fourier, temporal gradient, temporal PCA), (b) derivation of

a reference dataset that is free of motion from the measurements themselves (c) effi-

cient decoupling of the motion estimation problem from the reconstruction problem.

Unlike existing MC-CS schemes, the proposed scheme does not require fully sampled

prescans or navigators for motion estimation. Since we do not model the dynamic

frames as deformations of pre-contrast reference images, our approach is robust to
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Figure 5.1: Free breathing myocardial perfusion MRI data representation in transform
domains with and without motion compensation: We show the image time profile of
a free breathing MPI dataset in (a); the ripples here correspond to interframe motion
largely due to breathing. The corresponding profile of the motion compensated (MC)
dataset in (d) show that profile is largely free of the ripples. From (b) and (e),
it can be seen that the motion compensated dataset takes a sparser representation
compared to the original data as the temporal harmonics corresponding to the motion
are compensated in (e). From (c), it can be seen that the pixel time profiles are more
piece-wise smooth compared with the MC data compared to the original, hence the
former has more sparse temporal gradients. In (f), it can be seen that the number of
significant singular values are reduced in the MC dataset compared to the original.

contrast variations due to bolus passage, in comparison to [110]. Our motion estima-

tion scheme estimates the deformation by registering the dynamic data to a reference

dataset that is free of respiratory motion, which is derived from the measurements

themselves in the variable splitting optimization.

In the next two sections, we describe the formulation of the MC-CS problem, the

proposed variable splitting framework and the resulting optimization algorithm. In
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the last two sections of this chapter, we present results on the feasibility of the MC-CS

algorithm to improve reconstruction quality of free breathing myocardial perfusion

MRI data based on retrospective resampling experiments on fully sampled numerical

phantom and in-vivo datasets. We also demonstrate the feasibility in improving

free breathing reconstructions of prospectively accelerated radial data from subjects

imaged during adenosine stress perfusion.

5.2 Motion compensated compressed sensing
(MC-CS)

5.2.1 Dynamic image acquisition

The main objective in this chapter is to recover the dynamic dataset f(x, t); xε(x, y)

from its undersampled Fourier noisy measurements b(ki, ti). The measurement pro-

cess in dynamic MRI can be modeled as:

bi =

∫

x

f(x, ti) exp
(
−jkTi x

)
dx + ni; i = 0, .., s− 1. (5.1)

Here, (ki, ti) indicates the ith sampling location. We denote the set of sampling

locations as Ξ = {(ki, ti), i = 0, .., s − 1}. The above expression can be rewritten in

the vector form as

b = A(f) + n, (5.2)

where A is an operator that evaluates the Fourier Transform on the sampling

locations specified in Ξ.

5.2.2 MC-CS model

In a setting of the subject maintaining a perfect breath-hold, the voxel time pro-

files in myocardial perfusion MRI follow certain characteristics that make it amenable
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to compressed sensing. As demonstrated in figure 5.1, the data takes a sparse rep-

resentation in transform domains such as temporal Fourier transform (due to low

temporal bandwidth), temporal total variation (due to reasonably smooth voxel time

profiles), temporal principal component analysis (PCA) (as many voxels share similar

time profiles). However, the sparse representations in these transform domains are

significantly disturbed in the presence of significant inter-frame motion, that could

be caused by respiratory motion or inconsistent gating (see fig. 5.1). In this con-

text, we propose to simultaneously recover the motion characterized by θ(x, t) and

the dynamic images f(x, t) from under-sampled data b(k, t) using the following min-

imization scheme:

{f ∗, θ∗} = min
f,θ
‖A(f)− b‖22 + λ‖Φ (Tθ · f)‖`1 ; (5.3)

Here A is the Fourier sampling operator as defined in (5.2). θ(x, t) are the mo-

tion parameters that describe pixel wise displacements, and T is an image warping

operator based on bilinear interpolation. (Tθ(x,t) · f) is the motion compensated ver-

sion of f . In this work, we consider a non-rigid deformation model to model the

motion. Φ can be any temporal sparsifying transform such as the temporal Fourier

transform, temporal finite difference transform, temporal PCA transform. Note that

the regularization term promotes sparsity of the motion compensated dataset (Tθ · f)

rather than f . The rapid variations in f , induced by inter-frame motion will be cap-

tured by θ(x, t), which is also estimated during the joint estimation scheme from the

undersampled measurements.

5.3 MC-CS: Optimization algorithm

We use the approach of variable splitting to decouple the original problem in (5.3)

to simpler sub-problems. Specifically, we split the deformation from the `1 nom by

introducing an auxiliary variable g. This enables us to reformulate the unconstrained
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problem in (5.3) to a constrained one below (5.4):

min
f,θ,g
‖A(f)− b‖22 + λ‖Φ (g)‖`1 ;

s.t., Tθ · f = g; (5.4)

We solve (5.4) using the penalty based method, where the constraint is relaxed

and the corresponding quadratic violation is penalized as:

min
f,θ,g
‖A(f)− b‖22 + λ

(
‖Φ (g)‖`1 +

β

2
‖Tθ · f − g‖22

)
; (5.5)

where β is the penalty parameter that determines the equivalence of (5.5) to (5.4).

When β approaches ∞, the solution of (5.5) tends to that of (5.4) and hence (5.3).

The cost in (5.4) has to be now minimized with respect to three variables f, θ, g; we

solve it by using an alternating minimization scheme, where each variable is solved

by assuming the rest to be known. This results in the following sub problems:

5.3.1 g sub-problem (Temporal denoising/dealiasing)

With f and θ fixed, the minimization of (5.5) with respect to g is a denoising/de-

aliasing problem; Specifically, it involves denoising/dealiasing of the motion compen-

sated dataset Tθ · f︸ ︷︷ ︸
q

by promoting `1 sparsity in the transform domain Φ:

min
g

2

β
(‖Φ(g)‖`1) + ‖ Tθ · f︸ ︷︷ ︸

q

−g‖22; (5.6)

Note that, for a low value of β, the solution in g will be biased towards the sparsity

based regularization term and vice-versa. To solve (5.6), we employ a fast penalty

based optimization algorithm with continuation. This algorithm involves alteration of

a shrinkage step and an analytical update of g. The shrinkage steps and the analytical
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updates can be derived accordingly to a specific chosen transform Φ (such as temporal

Fourier, temporal total variation, or temporal PCA).

5.3.2 θ sub-problem (Motion estimation)

Assuming the variables f and g in (5.5) to be known, we solve for the motion

parameters as:

min
θ
‖Tθ · f − g‖22; (5.7)

This is a registration problem with a least squares similarity metric, where the

dynamic scene f(x, t) is registered frame by frame with a reference scene g(x, t). Note

that the reference series is derived from the measurements itself (obtained from (5.6));

we do not require additional high resolution reference frames. The temporal profiles

of the reference dataset g is significantly more smooth compared to f . This approach

enables us to decouple the effects of smooth perfusion induced contrast changes and

the more rapid changes resulting from respiratory motion.

To solve the above registration subproblem, one could employ any standard image

registration algorithm. In this work, we used the optical flow based demons non-

rigid registration algorithm [116, 117], which is available as an open source package

[118]. In the demons algorithm, a displacement vector is assigned to each pixel,

and the deformation is estimated such that the displacement field that gives for

each pixel on the reference image its corresponding location on the target image is

smooth. It uses a gaussian based regularizer to penalize irregular deformations, and

has information from the gradient of the target and reference images as its driving

force. To summarize, the demons algorithm alternate between the following steps in

an iterative mode:

Summary of the demons registration algorithm

Input: f(x, ti) is the target image, and g(x, ti) is the reference image for a specified
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time instant ti; xε(x, y)

Initialization: θ(x, ti) = θinit(x, ti);

while (iterations < Maximum iteration number) ;

m(x, ti) = Tθ(x,ti) · f(x, ti); (a) Warp the target image using the linear inter-

polation warping operator T .

u(x, ti) = (Tθf−g)∇(g)
|∇g|2+α2(Tθf−g)2

+ (Tθf−g)∇(Tθf)
|∇(Tθf)|2+α2(Tθf−g)2

; (b) Update the displacement

based on demon forces from the gradients of the reference and target images.

u = u ∗ Gσ(x); (c) Smooth the displacement

field by an isotropic Gaussian filter (G) having a zero mean, and a standard deviation

of σ pixels.

θ = θ+u; (d) Update the transformation

field

end

The displacement field in (a) has been adapted from [117], where the demon force

comprise of (i) internal edge based forces from the static and reference images ( i.e., the

image gradients on the reference, target images that gives the relationship between the

neighboring points), and the (ii) external force governed by the difference in the pixel

intensities of the reference and target images. The algorithm has two free parameters

that affect the performance of registration: (a) the value of σ that controls the width of

the Gaussian regularizer which in turn controls the regularization of the deformation

field, and (b) α which governs the force strength. Small values of α would correct for

large deformations, while larger values of α corrects for finer deformations [117].
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5.3.3 f sub-problem (reconstruction update)

Assuming θ, and g fixed in (5.5), the minimization with respect to f reduces to:

min
f
‖A(f)− b‖22 +

λβ

2
‖Tθ · f − g‖22; (5.8)

This is a quadratic problem which we solve by using the method of conjugate gradients

(CG).

5.3.4 Continuation strategy to alternate between the
sub-problems

The simultaneous estimation of f, θ in (5.3) makes the problem non-convex. The

usage of the variable splitting strategy described above enabled the decomposition of

the original problem into simpler subproblems in (5.6), (5.7), (5.8). To ensure efficient

cycling between these sub problems, we utilize the following continuation strategies:

5.3.4.1 Continuation over the penalty parameter (β)

The cost in (5.5) should be solved for a very large value of β to ensure that the

constraint in (5.4) is satisfied. At a high value of β, the problem gets highly ill-

conditioned, and the resulting algorithm will have poor convergence properties. On

the other hand a low value of β will ensure fast convergence but with the accuracy

compromised. We incorporate a continuation strategy over β that has been success-

fully used in related works in the context of compressed sensing [53], [62]. Specifically,

we start with a low values of β to solve the modified cost in (5.5) in an inner loop.

Once a stopping criterion is met in the inner loop, we increment the value of β in

an outer loop and again solve (5.5). This is repeated until the constraint in (5.4) is

satisfied. In addition to improving the convergence of the algorithm, the continua-

tion over β enables the derivation of the reference scene g, which is free of motion,

and is subsequently used as the reference scene in the image registration subproblem.

Specifically, during the initial iterations, with a low value β, the solution to the g
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subproblem (temporal denoising/dealiasing problem in (5.6)) would be heavily reg-

ularized, which results in smoothing of the rapidly varying inter-frame oscillations

while preserving the slowly varying dynamics due to the contrast changes in f . As β

is increased, the solution in g subproblem gets closer to the data-term in (5.6) i.e, g

tends towards Tθ · f , and as described above, the algorithm is terminated when this

constraint is satisfied.

5.3.4.2 Continuation over the deformation force strength parameter (α)

The motion parameter estimation problem in (5.7) is itself a non-convex problem.

Additionally when iterated along with the reconstruction (5.8) and denoising (5.6)

problems, there is a possibility that the estimated motion parameters could get stuck

in bad local minima resulting in the algorithm to diverge. To avoid such scenarios, we

propose to use a strategy of a coarse to fine motion correction strategy by adaptively

tuning the demons registration algorithm parameters during the iterations. To this

end, we adapt the recommendation prescribed in [117] by correcting for bulk motion

using a small value of the force strength parameter α, and as the iterations proceed,

we gradually increase α, and correct for finer motion changes. Specifically, with an

initial guess of θ = 0, the sub-problem in (5.7) is solved in an outer loop starting

with a small value of α, and the solution in θ is refined by gradually incrementing α

towards high values; After the first outer loop, the sub-problem in (5.7) is initialized

with the motion estimates obtained from the previous iteration. The following pseudo

code summarizes the continuation strategies that we adapt to solve the cost in (5.5):

Initialization: f = finit, θ = 0, α > 0, β > 0;

for out = 1 to Maxouter iterations

for in = 1 to Maxinner iterations
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fn ←(5.8); CG reconstruction update with motion compensation;

gn ←(5.6); temporal denoising/de-aliasing;

if (|costn − costn−1|/|costn| < 10−3); cost as defined in (5.3);

break; break the inner loop;

end

end

while (‖θn − θn−1‖22/‖θn‖22 > 10−2); Check if the motion parameter update

has converged;

θn ←(5.7); Motion estimation (Non-rigid image registration using the

demons algorithm);

end

α = α× 2; continuation over the deformation force strength parameter;

β = β × 10; continuation over the penalty parameter;

end

5.3.5 Convergence analysis

In this section, we study the convergence behavior of the proposed MC-CS algo-

rithm. We consider a myocardial perfusion MRI dataset with significant motion con-

tent, and aim to recover it from its under-sampled Fourier measurements by using the

MC-CS algorithm (see section IV.A for the data specifications). For under-sampling,

we consider resampling of the dynamic k-t data using a golden-angle radial k-t trajec-

tory where the successive radial rays were spaced by the golden angle (111.25 degrees);

here, we considered 20 radial rays that corresponded to an acceleration factor of 4.5.

In this section, we employ Φ to be the temporal gradient (x-TV) operator. We now

demonstrate the role of the continuation, and discuss the algorithm’s dependence on
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the initial guess of the reconstruction.

5.3.5.1 Continuation over β

In figure 5.2, we demonstrate the role of incrementing the parameter β gradually.

From the figure, it can be seen that the gradual increment ensures the derivation of

the reference dataset free of motion, which is used as the reference dataset for the

image registration sub-problem. At convergence it can be seen that the constraint in

eq. 5.4 is met.

5.3.5.2 Continuation over α

In figure 5.3 , we show the cost in (5.3) for the cases of a fixed value of α = 4,

and a continuation over α. In the latter, α is initialized to 4, and is incremented by a

factor of 4 as described in the pseudo code above. From the figure, it can be seen that

the algorithm converge to almost the same solution in both these cases. However,

the method with continuation showed a faster convergence. Specifically the one with

continuation had a reconstruction time of 30 minutes while the regime with fixed α

took about 53 minutes to reconstruct.

5.3.5.3 Sensitivity to initial guess

In figure 5.4, we study the behavior of the algorithm to different initial guesses

of f . Specifically, we study the evolution of the SER with the algorithm using initial

guesses obtained from the fully-sampled ground truth data,zero filled direct IFFT

reconstructed data, and a spatially regularized total variation reconstructed data.

We found that the algorithm was more or less robust to the choice of the initializa-

tion. This could be attributed to the continuation over the penalty and deformation

parameters. The continuation ensures a gradual progression in the complexity of

the problem, thereby avoiding the chance of getting stuck in bad local minima. We

however did not evaluate the proposed method with different choices of sampling
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patterns. For example, a 1D Cartesian pattern could result in significant overlap ar-

tifacts, which may not serve as a good initialization. The radial sampling pattern on

the other hand gave benign artifacts, and was still robustly used as an initialization

to the algorithm. A natural way to get the algorithm working with any sampling

pattern is to initialize it with a basic regularized reconstruction such as the spatial

TV reconstruction.

5.4 Materials and Methods

5.4.1 Datasets and k − t sampling

To validate the proposed MC-CS scheme, we initially perform retrospective re-

sampling experiments on (i) the Physiologically improved non-uniform cardiac torso

(PINCAT) numerical phantom, [119], [18] and (ii) an in-vivo fully sampled myocar-

dial perfusion MRI dataset with motion. We finally show example reconstructions

using prospectively undersampled radial data from two subjects imaged during stress

and free breathing conditions.

We consider a single slice in the short axis view of the PINCAT phantom whose

parameters were set to obtain realistic cardiac perfusion dynamics and contrast varia-

tions due to bolus passage, while accounting for respiration with variability in breath-

ing motion. The contrast variations due to bolus passage are realistically modeled

in regions of the right ventricle (RV), left ventricle (LV) and the left ventricle my-

ocardium. Here, we assume a temporal resolution of one heart-beat, and the dynamic

frames to be acquired during the diastolic phase (where the cardiac motion is mini-

mal). The time series data consists of 35 time frames capturing the first pass passage

of bolus through the different regions of the heart. We observe that the predominant

motion (due to respiration) is in the superior-inferior direction with a low degree of

through plane motion in the anterior-posterior direction. The spatial matrix size is

64 x 64, which corresponds to a spatial resolution of 3 x 3 mm2.

For the fully sampled invivo data, we considered a single slice from a satura-
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tion recovery FLASH sequence (TR/TE=2.5/1ms, Saturation recovery time =100ms,

3slices). Data was acquired on a Cartesian grid (PE x FE encodes: 90x190, temporal

resolution: 1 beat) using a Gadolinium bolus of 0.02mmol/kg under rest conditions.

The data contained motion primarily due to breathing and inconsistent gating. Ad-

ditionally, some integer shifts were added to amplify the motion (see fig 5.7).

For the PINCAT and the fully sampled in-vivo data, resampling experiments

were performed by using a radial k-t sampling pattern based on the golden angle ray

distribution; i.e, the angle between successive rays was 111.25 degrees. Subsampling

was performed by considering (30 to 8) and (30 to 12) rays/frame respectively for the

PINCAT and the in-vivo datasets.

For the prospectively undersampled data, we considered data acquired using a

perfusion radial FLASH saturation recovery sequence (TR/TE ≈ 2.6/1.2 ms, 3 slices

per beat, flip angle of 14 degrees, 2.3 × 2.3 × 8 mm voxel size, FOV: 280 mm2,

Bandwidth 1002 Hz/pixel ) on a Siemens 3T Trio scanner [77]. 72 radial rays equally

spaced over π radians and with 256 samples per ray were acquired for a given time

frame and a given slice. These rays were acquired in an interleaved manner in subsets

of 6 rays each. The rays in successive frames were rotated by a uniform angle of

π/288 radians, which corresponded to a period of 4 across time. Data was acquired

with the Siemens cardiac coil array with four channels. We considered two stress

data sets that were acquired on free breathing subjects where 0.03 mmol/kg of Gd

contrast agent was injected after 3 minutes of adenosine infusion. In this work, a

PCA based coil compression strategy [85] was used to compress the four coil data set

to a single coil principal component data set. With this data, we performed single coil

reconstruction comparisons using 21 rays that were chosen to approximately follow

the golden angle distribution.
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Figure 5.2: Continuation over the penalty parameter β: Here we show the time
profiles of f, g, Tθ · f as they evolve during the iterations. From the first row, it
cab seen that in the initial iterations, the value of β is small that resulted in the
temporally smooth reference dataset in g. This dataset is image resgistered frame by
frame to the reconstruction f to obtain the motion estimates θ. As the algorithm
converge, it can be seen the reconstruction and the motion estimates improve, and at
convergence the constraint in eq. (5.4) (g = Tθ · f) is met.
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Figure 5.4: Evolution of the region of interest signal to error ratio as the iterations
proceed. The algorithm was found to be more or less robust to the choice of the
initial guess of the reconstruction.
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5.4.2 Comparison of MC-CS with its CS variants

We compare the proposed MC-CS scheme against its compressed sensing (CS)

counterparts for different choices of the temporal sparsifying transform Φ. We con-

sider the choices of the (a) temporal Fourier (x-f), (b) temporal gradient (x-TV), (c)

temporal PCA (x-PCA) transforms.

We initialized the MC-CS scheme with the reconstructions obtained from a spatial

TV regularized method. We used the initial value of α = 4 and used the same

continuation rule updates for β, and α in all the three flavors of the MC-CS scheme.

The value of Gaussian regularizer in the demons registration algorithm was fixed to

a standard deviation of 10 pixels for all the three choices of the transforms. We

implemented all the schemes that gave the maximum signal to error ratio (SER)

between the reconstructions and the available fully sampled ground truth data:

SERROI = −10 log10

ΣN
i=1

(
‖Γrecon,i−Γideal,i‖2F

‖Γideal,i‖2F

)

N
; (5.9)

where N is the number of time frames. During this optimization, the SERROI metric

was evaluated only in a field of view that contained regions of the heart. This was

motivated by recent findings in [79], and by our own experience in determining a

quantitative metric that best describes the accuracy in reproducing the perfusion

dynamics in different regions of the heart, and the visual quality in terms of preserving

crispness of borders of heart, and minimizing visual artifacts due to reconstructions.

For experiments involving retrospective undersampling, we evaluate the recon-

structions in terms of the Signal to error ratio (SER) metric and the High frequency

normalized error metric (HFEN). The SER metric is defined in eq. 5.9, while the

HFEN metric that gives a measure of image sharpness is defined as:

HFENROI =
1

N

N∑

i=1

‖LoG(Γrecon,i)− LoG(Γideal,i)‖2F
‖LoG(Γideal,i)‖2F

(5.10)
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where LoG is a Laplacian of Gaussian filter that capture edges. We use the filter

specified by a kernel size of 15× 15 pixels, with a standard deviation of 1.5 pixels.

5.5 Results

In figure. 5.5, we show qualitative comparisons of the proposed MC-CS scheme

with the temporal Fourier, temporal gradient, and temporal PCA transforms against

its CS counterparts. These comparisons are shown after the recovery has been per-

formed using 20 rays/frame. From this figure, we observe that all the three transforms

benefit from motion compensation. In specific, the CS methods were sensitive to mo-

tion artifacts such as temporal stair casing (with temporal TV), motion blurring

(with temporal Fourier), loss in spatio-temporal fidelity resulting in blurring of my-

ocardial borders (with temporal PCA). In contrast, the MC-CS methods were found

to be more robust to these artifacts. We observed similar trends over a range of

subsampling factors as depicted in the SER and HFEN plots in figure 5.6.

In figure. 5.8, we show the comparisons involving retrospective sampling on the

fully sampled in-vivo Cartesian data. The comparisons are shown using 16 radial

rays per frame. Similar to the PINCAT phantom observations, we notice superior

spatio-temporal fidelity and less motion artifacts with the proposed MC-CS scheme

compared to its CS variants. The SER and HFEN plots in figure 5.9 also depict the

same trend over a range of subsampling factors.

In figure. 5.10, we show the comparisons using prospectively undersampled radial

stress free breathing data. We observe MC-CS to give better reconstructions in terms

of minimizing motion blur and artifacts compared to CS. This preliminary result is

demonstrated using a single coil with 21 rays, however the performance could be

significantly improved by extending to multiple coils and include spatial priors (as

demonstrated in chapter 3).
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Figure 5.5: Qualitative comparison on the PINCAT phantom data using 20
rays/frame: We show for each of the scheme a spatial frame, its image time pro-
file, and the corresponding error images and error time profiles. The error images are
scaled up by a factor of 10 for better visualization. As depicted from these figures,
the MC-CS schemes provide superior reconstruction quality in terms on minimizing
motion artifacts compared to its CS counterparts. The motion compensated time
profiles shown in the bottom row depicts that the proposed algorithm was capable to
estimate and compensate most of the inter-frame motion.
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Figure 5.6: Quantitative comparisons of different schemes using the signal to error
ratio (a), and high frequency normalized error metrics (b) on PINCAT phantom data.
These plots demonstrate that the MC-CS schemes significantly outperforms the CS
schemes at all sub-sampling factors.
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Figure 5.9: Quantitative comparisons of different schemes using the signal to error
ratio (a), and high frequency normalized error metrics (b) on the invivo myocar-
dial perfusion data. These plots demonstrate that the MC-CS schemes significantly
outperforms the CS schemes at all sub-sampling factors.

5.6 Discussion

In this chapter, we proposed a motion compensated compressed sensing frame-

work for improving the reconstruction of free breathing myocardial perfusion MRI

data. We developed a variable splitting based optimization algorithm to decouple the

problem to multiple well understood subproblems. With the resulting framework,

we compared the performances of utilizing motion compensation in improving CS

reconstructions that relied on temporal Fourier sparsity, temporal TV sparsity, and

temporal PCA regularization (using nuclear norm regularization). We observed that

all the methods benefited from motion compensation. However, when compared as

to which scheme benefited the most, we observed the temporal TV and the x-f based

MC-CS schemes significantly outperformed the x-PCA MC-CS scheme in the exper-

iments with in-vivo data. The x-PCA scheme tended to blur the spatio-temporal

dynamics due to contrast changes even when the motion was compensated. This

may be due to the usage of the nuclear norm penalty in enforcing the low rank con-

straint. The performance could be improved by looking at equivalent Schatten-p
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norm penalties.However, we realize that for a fair conclusion in terms of comparing

the methods after the motion is compensated, a comparison is needed on perfectly

breath-hold datasets. Since the proposed framework decouples the sparsity based

temporal denoising/de-aliasing as a stand alone problem, it is starightforward to look

at multiple extensions of the framework. Extension could include adding spatial reg-

ularizers such as Wavelet, spatial total variation, or combine the benefits of different

regularizers such as combining the x-PCA and the x-f or x-TV sparse priors. Further-

more, extensions to include `p norms is also possible by utilizing efficient shrinkage

rules during `p minimization [19]. The reconstruction problem could also be adapted

to include information from multiple coils. We look to address some of these exten-

sions systematically in a future work.

In general, we observed the registration model with continuation was robust. In

this study, with radial sampling we surprisingly found the performance of the algo-

rithm to not be very sensitive to the choice of initial guess. This may be attributed to

the continuation strategies we adapt to update our reconstructions and deformations,

and the benign undersampling behavior of the radial pattern. However, a future study

is required to evaluate this more on different sampling patterns. The run time of the

entire algorithm was about 30 mins for datasets of size 190×90×70. The implemen-

tation was based on performing all the tasks apart from the registration sub-problem

on a graphical processing unit. The main bottle neck of the reconstruction time was

the deformation algorithm, which was implemented on the CPU in MATLAB. The

algorithm could be further optimized by using gpus and other state of the art fast

implemented deformable models.
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CHAPTER 6
SUMMARY AND FUTURE WORK

6.1 Summary

Myocardial perfusion MRI is a promising tool to noninvasively assess ischemic

heart disease. The current commonly employed MRI methods in the clinic have lim-

itations in terms of obtaining adequate image quality due to inherent limitations of

the slow MRI acquisition. This dissertation presented novel MRI image reconstruc-

tion and acquisition methods that enable dynamic MRI reconstruction from highly

accelerated measurements. The developed methods in this thesis are applicable to a

wide range of dynamic imaging problems.

The key contributions of the thesis are summarized as follows:

• We have introduced a novel algorithm that exploits low rank and sparse struc-

ture of dynamic data for reconstruction from under-sampled k-t space data (k-t

SLR). The proposed scheme exploits the correlations in the dynamic imaging

dataset by modeling the data to have a compact representation in the Karhunen

Louve transform (KLT) domain. The use of the adaptive scheme makes our ap-

proach ideally suited for a range of dynamic imaging problems. In contrast to

current KLT-based methods that rely on two-step approaches to first estimate

the basis functions and then use it for reconstruction, we posed the problem as

a regularized matrix recovery problem. The proposed scheme uses both sparsity

and spectral priors to significantly improve the recovery rate. Quantitative and

qualitative comparisons on numerical phantoms and in-vivo cardiac perfusion

MRI data clearly demonstrated a significant improvement in performance over

existing methods.

• We have extended k-t SLR by combining the reconstruction with non-Cartesian

radial sampling and parallel imaging. A fast augmented Lagrangian (AL) op-

timization algorithm was introduced to provide fast convergence. We showed
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that the resulting developments demonstrates feasible free breathing myocardial

MRI reconstruction. Comparisons on myocardial perfusion rest and stress data

sets showed that k − t SLR was able to achieve feasible reconstructions using

few rays while being robust to artifacts such as spatio-temporal and motion

blurring. We have shown preliminary feasibilities that k-t SLR can enable free

breathing myocardial perfusion MRI with high spatio-temporal resolution and

slice coverage (¡ 2x2 mm x mm, 1 heart beat, 8 slices).

• We have introduced a novel frame work for blind compressed sensing (BCS)

in the context of dynamic imaging. The model represents the dynamic signal

as a sparse linear combination of temporal basis functions from a large dic-

tionary. An efficient majorize-minimize algorithm was used to simultaneously

estimate the sparse coefficient matrix and the dictionary. The comparisons

of the proposed algorithm with alternate BCS implementations demonstrated

the computational efficiency, insensitivity to initial guesses, and the benefits of

combining `1 sparsity norm with Frobenius norm dictionary constraints. Our

phase transition experiments using simulated dynamic MRI data show that

the BCS framework significantly outperforms conventional compressed sensing

(CS) methods, and is only marginally worse than the dictionary aware case.

This makes the proposed method to be highly useful in dynamic imaging appli-

cations where the signal is not sparse in known dictionaries. The validation of

the BCS scheme on accelerating free breathing myocardial perfusion MRI show

significant improvement over low rank models and compressed sensing schemes.

Specifically, the proposed scheme is observed to be robust to spatio-temporal

blurring and is efficient in preserving fine structural details.

• We have developed a novel framework that performs joint reconstruction and

motion estimation in the context of compressed sensing. The novelties enabled
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by this framework are (a) a generalized formulation capable of handling any

temporal sparsifying transform (such as temporal Fourier, temporal gradient,

temporal PCA), (b) derivation of a reference dataset that is free of motion

from the measurements themselves (c) efficient decoupling of the motion es-

timation problem from the reconstruction problem. Unlike existing MC-CS

schemes, the proposed scheme does not require fully sampled prescans or nav-

igators for motion estimation. With validations on numerical phantoms and

invivo free breathing MR-MPI data,we have demonstrated the utility of the

proposed scheme in significantly improving compressed sensing reconstructions

in terms of minimizing motion artifacts.

6.2 Future work

The dynamic MRI methods developed in this thesis are ultimately targeted

towards clinical utility. The proposed methods have been tested on a limited

number of subjects in this thesis. To fully evaluate the efficiency and repro-

ducibility of the developed methods in the clinical routine, a systematic study

on a large number of patient scans is needed. In this section, we list a few poten-

tial improvements of the developed methods, and also list potential directions

in terms of clinically validating the methods.

– Extensions to 3D imaging: 3D acquisitions have advantages over multi-

slice 2D imaging in terms of providing contiguous spatial coverage, and

its capability of accurate estimation of ischemic defect sizes. Extension

of the 2D radial sampling patterns to 3D sampling schemes with variable

density kz sampling would be more robust to downsampling, and more

suitable for acceleration with parallel MRI. Furthermore, due to higher

redundancies in the 4D (3D+time) dataset, the joint recovery of the 4D

data using the developed methods (k-t SLR, BCS, MC-CS) could provide
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better reconstructions than slice by slice (2D+time) reconstructions.

– Improving motion compensated compressed sensing: The proposed MC-

CS scheme could be extended in several ways to fully exploit the power

of the method. Extensions include combining multiple coils, multiple con-

straints such as low rank and sparsity constraints, usage of the non-convex

`p norms, inclusion of spatial smoothness regularizers, and improving the

computational efficiency of the registration algorithm.

– Clinical evaluation using multiple patient data : A thorough clinical eval-

uation of the reconstructed image quality using the developed methods

is required on a cohort of patient datasets with validations against the

gold standard X-ray coronary angiography. Such an analysis is required

to characterize the image quality and any typical artifact levels introduced

by the developed methods.
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